
1 The LPS-library

This document describes data types and algorithms of the LPS-library.

1.1 Terms

For an arbitrary term t we define Var(t) as the set of data variables that occur in t. The result of substituting
d′ for d in a term t is denoted as t[d := d′]. With d ∈ Sub(t) we denote that data variable d is a subterm of
data expression t.

1.2 Timed Linear processes

Let D be the set of all data expressions, with ≃ an equivalence relation on D. All data expressions have
implicitly defined an associated sort. Let V ⊂ D be the set of all data variables. Furthermore, let A be the
set of action labels. A timed linear process X is a process equation of the following form:

X(d : D) =
∑
i∈I

∑
e:Ei

ci(d, e) → ai(fi(d, e))↪ti(d, e)X(gi(d, e)) +
∑
i∈J

∑
e:Ei

ci(d, e) → δ↪ti(d, e), (1)

and I and J are disjoint and finite index sets, and for i ∈ I ∪ J :

• ci : D × Ei → B is the condition function,

• ai(d, e) is a multi-action a1i (f
1
i (d, e))| · · · |a

ni
i (fni

i (d, e)), where fi : D×Ei → D is the action parameter
function,

• ti : D × Ei → R is the time stamp function,

• gi : D × Ei → D is the next state function.

The components di ∈ V of vector d = [d1, · · · , dm] are called the process parameters of X.

1.3 Untimed Linear processes

Similarly, an untimed linear process X is a process equation of the following form:

X(d : D) =
∑
i∈I

∑
e:Ei

ci(d, e) → ai(fi(d, e))X(gi(d, e)) +
∑
i∈J

∑
e:Ei

ci(d, e) → δ , (2)

with ci, ai and gi defined as above.

1.3.1 State Space

An untimed linear process 2 with initial value d ∈ D defines a labeled transition system M = (S,Σ,→, s0),
where

• S = D is the (possibly infinite) set of states

• Σ = {ai(fi(d, e))|i ∈ I ∧ e : Ei} is the (possibly infinite) set of labels

• → = {(d, ai(fi(d, e)), gi(d, e))|i ∈ I ∧ e : Ei ∧ ci(d, e)}

• s0 = d is the initial state

For R ⊂ S we define next states(R) as {s ∈ S|∃r ∈ R : r → s}.

1

1.4 Global variables

In the mCRL2 tool set a linear process is parameterized with a finite set DC of so called global variables.
This means that the expressions ci(d, e), fi(d, e), gi(d, e), and ti(d, e) may contain unbound variables from
the set DC. Global variables have the implicit property that any two processes obtained by assigning values
to them are strongly bisimulation equivalent. In many algorithms we will simply ignore global variables. In
some cases, algorithms may assign values to some of the global variables.

1.5 Notations

Let p be an untimed linear process as defined in 2.

• A constant parameter of p is a parameter di that has a constant value for all reachable states of the
corresponding state space, given an initial state d : D.

• An insignificant parameter of p is a process parameter di such that for any two initial states that differ
only at the value of di, the corresponding state spaces are isomorphic.

• Let p be a linear process, x a data variable and y a data expression. Then p[x := y] is the linear process
obtained from p by applying the substitution x := y to all terms ci(d, e), fi(d, e), gi(d, e), and ti(d, e)
that appear in the definition of p.

1.6 Linear processes

Linear process expressions in mCRL2 are expressions built according to the following syntax:

expression C++ equivalent ATerm grammar
b(e) action(b,e) Action∑

v
c → a↪t P (g) summand(v, c, a, g) LinearProcessSummand∑
v
c → δ↪t summand(v, c, δ) LinearProcessSummand

P (d := e) process initializer(f, d := e)1 LinearProcessInit∑
i∈I

si linear process(f, v, s)2 LinearProcess

where the types of the symbols are as follows:

a a (timed) multi-action
b a string (action name)
δ a (timed) deadlock
P a process identifier

e, f, g a sequence of data expressions
d, v a sequence of data variables
t a data expression of type real
s a sequence of summands
c a data expression of type bool

A grammar for linear processes can be found in the Process implementation notes document.

1.7 Well typedness constraints

Not all linear processes that adhere to the grammar for linear processes are considered valid. A number
of restrictions apply to make them valid input for the mCRL2 toolset. These restrictions are called well
typedness constraints.

1Here f is a superset of the free variables appearing in e.
2Here s = [s1, · · · , sn] is a sequence of summands, v is the sequence of process parameters of the corresponding process, and

f is a sequence of free variables appearing in s.

2

1.7.1 well typedness constraints for data specifications

• the domain and range sorts of constructors are declared in the data specification

• the domain and range sorts of mappings are declared in the data specification

1.7.2 well typedness constraints for a linear process

• the process parameters have unique names

• process parameters and summation variables have different names

• the left hand sides of the assignments of summands are contained in the process parameters

• the summands are well typed

1.7.3 well typedness constraints for linear process specifications

• the sorts occurring in the summation variables are declared in the data specification

• the sorts occurring in the process parameters are declared in the data specification

• the sorts occurring in the global variables are declared in the data specification

• the sorts occurring in the action labels are declared in the data specification

• the action labels occurring in the linear process are declared in the action specification

• the data specification is well typed

• the linear process is well typed

• the process initializer is well typed

• the global variables occurring in the linear process are declared in the global variable specification

• the global variables occurring in the initial process are declared in the global variable specification

• the global variables have unique names

1.7.4 well typedness constraints for other types

• the sorts of the left and right hand side of an assignment are the same

• the time of a summand has type Real

• the condition of a summand has type Bool

• the set of left hand sides of assignments in an action summand or process initializer does not contain
duplicates

3

2 Algorithms

We now define two operations on linear processes: removing (insignificant) parameters and removing constant
parameters. Let X(d : D) be a linear process as defined in 2, or 1 and let {dj1 , · · · , djm} be a set of
insignificant parameters of X. Then we define RemoveParameters(p, {dj1 , · · · , djm}) as a linear process
obtained from X(d : D) by removing {dj1 , · · · , djm} from the process parameters of X, and by replacing
each term ci(d, e), fi(d, e), gi(d, e), or ti(d, e) that appears in the definition of X, and that has one of the
variables dj1 , · · · , djm as a subterm by a term c′i(d, e), f

′
i(d, e), g

′
i(d, e), or t′i(d, e) that does not have one

of the variables dj1 , · · · , djm as a subterm, and such that the remaining process is strongly bisimulation
equivalent to X(d : D)3.

LetX(d : D) be a linear process as defined in 2, or 1 and let {dj1 , · · · , djm} be a set of constant parameters
of X, given the state d : D. Then we define RemoveConstantParameters(p, {dj1 , · · · , djm}, d) as a
linear process obtained from X(d : D) by removing {dj1 , · · · , djm} from the process parameters of X, and by
replacing each term ci(d, e), fi(d, e), gi(d, e), or ti(d, e) that appears in the definition of X by a term c′i(d, e),
f ′
i(d, e), g

′
i(d, e), or t

′
i(d, e) that does not have one of the variables dj1 , · · · , djm as a subterm, and such that

the remaining process is strongly bisimulation equivalent to X(d : D)4.

2.1 Parelm

Let P be the stochastic linear process

P (d : D) =
∑
i∈I

∑
e:Ei

ci(d, ei) → ai(fi(d, ei))↪ti(d, ei).
pi(d,ei,hi)

hi:Fi
P (gi(d, ei, hi)),

with initial state

Pinit =
p(h)
h:F P (g(h)),

with d = [d1, . . . , dn] the process parameters of P . The algorithm Parelm is used to find insignificant
process parameters that can be eliminated from P without altering the corresponding state space. It is not
guaranteed that all insignificant process parameters are detected.

Parelm implementations We define the following implementations of parelm:

Parelm1(P, Pinit)
G := {k ∈ [1, . . . , n] | ∃i∈I : dk ∈ FV(ci(d, ei)) ∪ FV(fi(d, ei)) ∪ FV(ti(d, ei)) ∪ FV(pi(d, ei, hi))}
do

∆G := {k ∈ [1, . . . , n] | ∃l∈G ∃i∈I : dk ∈ FV(gi(d, ei, hi)l}
G := G ∪∆G

while (∆G ̸= ∅)
return {dj1 , · · · , djm},

where {j1, · · · , jm} = G. Note that gi(d, e)l is the l-th component of the vector of terms gi(d, e).

Parelm2(P, Pinit)
W := {dk | ∃i∈I : dk ∈ FV(ci(d, ei)) ∪ FV(fi(d, ei)) ∪ FV(ti(d, ei)) ∪ FV(pi(d, ei, hi))}
V := {d1, . . . , dn}
E := {(dj , dk) | ∃i∈I : dj ∈ FV(gi(d, ei, hi)k}
R := {dk | graph G = (V,E) contains a directed path w, · · · , dk for some w ∈ W}
return R

3A more formal definition of this is welcome.
4Or should this be restricted to the result of substituting all the constant values, and possibly applying the rewriter to it?

4

2.2 Constelm

Let P be the stochastic linear process

P (d : D) =
∑
i∈I

∑
e:Ei

ci(d, ei) → ai(fi(d, ei))↪ti(d, ei).
pi(d,ei,hi)

hi:Fi
P (gi(d, ei, hi)),

with initial state

Pinit =
p(h)
h:F P (g(h)),

with d = [d1, . . . , dn] the process parameters of P . The algorithm Constelm is used to find process
parameters that have a constant value. If needed the global variables of P will be assigned constant values.
The result is a substitution σ that assigns these constant values to the corresponding process parameters
and global variables. It is not guaranteed that all constant parameters are detected.

Constelm implementations Then we define the following implementation of Constelm:

Constelm(P, Pinit, V,R)
r := R(g(h))
G := {d1, . . . , dn}
σ := ϵ
for j := 1 to n do

σ[dj] := rj
undo[j] := ∅

do
∆G := ∅
for i ∈ I do

if R(σ(ci(d, ei))) ̸= false
for dj ∈ G \∆G do

let z = R(gi(d, ei, hi)j , σ)
if z ̸= σ(dj)

if z ∈ V
σ[z] := rj
undo[j] := undo[j] ∪ {z}

else
∆G := ∆G ∪ {dj}
σ[dj] := dj
for w ∈ undo[j] do

σ[w] := w
undo[j] := ∅

G := G \∆G
while (∆G ̸= ∅)
return σ

where V is the set of global variables of the linear process P , where R is a rewriter and ϵ is the empty
substitution (i.e. the identity function). The notation σ[v] := w means σ = σ′ with{

σ′(x) = σ′(x) if x ̸= v
σ′(x) = w if x ̸= v

An alternative implementation may look like this:

5

Constelm2(p, d)

R := {d}
G := {1, . . . , n}
do

∆R := next states(p,R)\R
if ∃i∈I .∃j∈G.∃r∈∆R.rj ̸= dj

G := G\{j}
fi
R := R ∪∆R

while (∆R ̸= ∅)
return RemoveConstantParameters(p, {dj1 , · · · , djm}, d),

where {j1, · · · , jm} = G.

6

2.3 Conversion to linear process

The function lin converts a process expression to linear process format, if it is linear.

lin(if then(c, δ)) = summand([], c, δ)

lin(if then(c, seq(x, P (g))) = summand([], c, lin(x), g)

add summand variables(summand(v, c,−→a , g), w) = summand(v + w, c,−→a , g)

add summand variables(summand(v, c, δ), w) = summand(v + w, c, δ)

lin(sum(v, x) = add summand variables(lin(x), w)

lin(seq(x, P)) = lin(x)

set multi action time(multi action([a1, · · · , an]), t) = multi action([a1, · · · , an], t)
lin(at time(x, t)) = set multi action time(lin(x), t)

multi action([a1, · · · , am]) + multi action([am+1, · · · , an]) = multi action([a1, · · · , an])
lin(sync(x, y)) = lin(x) + lin(y)

lin(a) = multi action([a])

lin(τ) = multi action([])

lin(choice(choice(x, y), z)) = lin(choice(x, y)) + [lin(z)]

lin(choice(x, choice(y, z))) = [lin(x)] + lin(choice(y, z))

lin(choice(x, y)) = [lin(x), lin(y)]

7

