Architecture of merl2ide

Olav Bunte
April 26, 2024

1 Introduction

The tool mcrl2ide is a graphical tool aimed at users unfamiliar with the mCRL2 toolset to
help them use the basic functionalities of the toolset. It is built using the Qt framework and it
consists of 9 header files, 10 source files, two ui files, one qrc file and a folder of icons. There are 9
modules, consisting of one header and one source file. This leaves one source file, namely main. cpp,
which is the entry point of the application. The two ui files, addeditpropertydialog.ui and
findandreplacedialog.ui are created using Qt Creator and describe the widget layout of the
add/edit property dialog and the find and replace dialog respectively. The qrc file describes what
resources (icons) are used by the tool.

2 Modules

There are 9 modules in mcrl2ide: MainWindow, ConsoleDock, PropertiesDock, Property Widget,
FindAndReplaceDialog, AddEditPropertyDialog, CodeEditor, ProcessSystem and FileSystem. See
figure 1 for the dependencies between these modules.

MainWindow

MainWindow is (after main.cpp) the entry point of the application and it defines the main window.
As MainWindow is the entry point, it creates instances of almost all other modules and passes them
on when necessary.

It also creates the menu bar and and the toolbar, including the actions that correspond to all
options on the menu bar and the toolbar. For every action a method is implemented that is called
when the action is triggered, which (often) then delegates handling this action to another module
(FileSystem for file related actions, ProcessSystem for tool related actions).

Whenever the state changes, MainWindow takes care of the changes in the main window. For
instance, when a project has been opened the title changes and properties are added via Proper-
tiesDock and when a process is running "start process" buttons change to "abort buttons".

ConsoleDock

ConsoleDock defines the QDockWidget that prints console output, by default located at the bottom.
It is mainly used by ProcessSystem to show progress of a running process and output generated
by the tools. It has one tab for each process type: parsing, simulation, state space generation and
verification.

PropertiesDock

PropertiesDock defines the QDockWidget that holds defined properties, by default located on
the right. Whenever a new property is defined, the PropertiesDock creates the corresponding
PropertyWidget and lays it out in the dock.

PropertyWidget

PropertyWidget defines the widget that holds a property. It creates the buttons and corresponding
actions that appear on the PropertyWidget. Similar to MainWindow, it has a method for each

PropertiesDock

FindAndReplaceDialog PropertyWidget

A AddEditPropertyDialog

ProcezsSystem

CodeEditor

Figure 1: Dependency graph of the modules in mcr12ide. A full arrow from module A to module
B means that A creates B or that A uses functions defined on B.

such action that is called when the action is triggered, which (often) delegates handling this action
to another module. It also creates an AddEditPropertyDialog that is used when editing a property.

Find AndReplaceDialog

FindAndReplaceDialog defines the dialog that is used to find and/or replace strings in the specifi-
cation editor. It also implements the functionality to do so. It creates a code editor for entering a
mu-calculus formula. It uses ProcessSystem to parse the entered property and FileSystem to save
the property.

AddEditPropertyDialog

AddEditPropertyDialog defines the dialog that is used to add a property to the project (add-
variant) or to edit a previously defined property (edit-variant).

CodeEditor

CodeEditor defines a text editor for merl2 specifications or mu-calculus formulas. It creates a wid-
get for line numbers and it implements basic text editor functionalities such as selecting, copying,
cutting, pasting, undoing, redoing, zooming and syntax highlighting.

ProcessSystem

ProcessSystem handles all things related to tools. It creates and runs processes for any tool action
that can be required, such as parsing, creating a simulation, creating and visualising a (reduced)
state space and checking a property. It has one ProcessThread for each process type, which uses
queues to make sure that one process of that process type runs at a time. How this works will be
explained in more detail in section 3.1.

FileSystem

FileSystem handles all thing related to files, such as creating, opening and saving files. It also
contains most of the application state such as project information.

2.1 Modules during application lifetime

During the lifetime of the application, there is only one instance of the modules MainWindow, Con-
soleDock, PropertiesDock, FindAndReplaceDialog, ProcessSystem and FileSystem. The number
of instances of PropertyWidget can change, depending on how many properties there are defined
in a current project. There is one instance of the add-variant of AddEditPropertyDialog (used by
MainWindow) and there is one instance of the edit-variant of AddEditPropertyDialog for every
PropertyWidget. There is one instance of CodeEditor used by MainWindow and there is one in-
stance of CodeEditor per AddEditPropertyDialog.

The user can only directly change the number of instances of PropertyWidget. All other changes
in number of instances are caused (directly or indirectly) by change in the number of instances of
PropertyWidget.

2.2 Signals

Apart from invoking a method synchronously, in Qt it is also possible to invoke methods asyn-
chronously using signals. A signal can be connected to a method (slot) and when this signal is
emitted, a new thread will spawn for every slot it is connected to which then executes the method.
The (main) thread that has emitted the signal simply continues right after emission. This is espe-
cially useful for changing the UI when the state changes. In mcr12ide this is also used for handling
processes. See figure 2 for the dependency diagram which also includes signals between modules.

e
PropertyWidget

q AddEditP,

~

FindAndReplaceDialog

Figure 2: Dependency graph of the modules in mcrl2ide including signals. A full arrow from
module A to module B means that A creates B or that A uses functions defined on B. A striped
arrow from module A to B means that A can send signals to a slot on B.

3 Activity

In this section we will explain in more detail what activity happens in the background when the
user interacts with mcrl2ide.

3.1 Processes

As mentioned before, there are 4 process types (parsing, simulation, state space generation and
verification) and each has its own ProcessThread. The reason each has its own ProcessThread
is that this allows processes of different process types to run in parallel. Whenever the user
invokes an action that needs tools to run, a process is created. A process consists of subprocesses
(QProcesses), each of which corresponds to a single run of a single tool. The subprocesses are
parsemcrl2 (which uses mcrl221ps), mcrl22lps, lpsxsim, lps2lts, ltsconvert, ltsgraph, parsemcf
(which uses 1ps2pbes), Ips2pbes and pbessolve. When a process is created, all corresponding
subprocesses are created. Also all data that is needed by the subprocesses such as filepaths is fixed
at the creation of the process. After a process has been created, it is added to the queue of the
corresponding ProcessThread.

A ProcessThread makes sure that queued processes are run in parallel with the main thread and
it can be in two states: waiting or running. If it is in state waiting, there is no process running
that corresponds to this thread and there is no process in the queue. If it is in state running there
is a process running that corresponds to this thread. While it is in a state it is blocked until it
receives a signal from outside. See figure 3 for the behaviour of a ProcessThread. Note that a
ProcessThread only regulates the (running of) processes, it does not execute them itself.

After a subprocess has finished, a "finished" signal is sent that activates a slot that handles starting
the next subprocess. In case the next subprocess creates an output file, it is first checked whether
there already exists an up to date output file. If this is the case, the next subprocess does not need
to be run and we simply emit its "finished" signal. If there is no up to date output file, we start
the next subprocess.

When a process has finished, it emits its "finished" signal. The point at which a process finishes
differs per process. Processes of type simulation or state space generation end with a subprocess
that runs a graphical tool (Ipsxsim, ltsgraph). These already emit their "finished" signal just before
starting the last subprocess to allow viewing multiple instances (for instance to see different reduced
LTSs next to each other). Processes of type parsing or verification emit their "finished" signal after
the last subprocess has finished. The result of these processes (valid/invalid or true/false) are stored
in ProcessSystem and can be retrieved when necessary.

Processes may be aborted by the user. When this happens, it is first checked whether this process
is running. If this is the case, the corresponding running subprocess is muffled (so that it does not
activate the next subprocess) and then killed. If the subprocess is not running but in a queue, it is
removed from the queue. In both cases the "finished" signal of the process is emitted afterwards
to let the corresponding ProcessThread continue the next process if it was running the aborted
process and to change the UL

[queue is empty]
2 current process has finished

[queue is not empty]
Waiting Running ? current process has finished
! start next process

? process added to queue
! start next process

Figure 3: The behaviour of a ProcessThread. An edge label can consist of three parts: a guard
surrounded by [], an incoming signal preceded by ¢ and an action executed by the ProcessThread
preceded by /.

3.2 User input

TODO activity diagrams/explanations of what happens after user input

