
Next-state computation templates in state space

exploration

Ruud Koolen
r.p.j.koolen@student.tue.nl

April 26, 2024

Abstract

In the context of the mCRL2 model checking toolkit, we investigate the
transition system computation process of state space exploration in search
of cases in which similar states lead to duplicate work being performed.
We present two techniques to take advantage of this scenario to speed up
state space exploration by memoizing the results of expensive computa-
tions among usable state patterns, resulting in a performance improve-
ment of almost a factor 200 for real-world workloads.

1 Introduction

In model checking applications, the generation of an explicit state space from
an algebraic system description is a common and usually time-consuming task.
Tools for such computations generally work by implementing the primitive of
computing the set of outgoing transitions from a given state, and running a
generic graph exploration algorithm on top of that system.

Something such tools do not generally take advantage of is the phenomenon
that different states may have (parts of) outgoing transition sets that are very
similar, such that parts of the computational work is effectively duplicated when
computing outgoing transition sets for multiple such “similar” states. By rec-
ognizing such cases of redundant computations, major performance gains could
be possible.

In this paper, we present two techniques to take advantage of this phenomenon,
in the context of the mCRL2 model checking toolset [?]. We do this by analyz-
ing system descriptions in search of opportunities to share computational work
between several states, implemented by memoizing certain results among the
largest set of states to which it applies. We show how this can speed up the
exploration process by almost a factor 200 for particular real-world models.

In Section 2 we formally introduce the different formalisms involved, as well
as the base algorithms on which our techniques are based. Section 3 describes

1

a technique for sharing the result of the expensive set comprehension compu-
tations as widely as possible; in Section 4 we describe a technique for bulk
dismissal of transition terms known not to apply to states sharing particular
patterns. Finally, in Section ?? we summarize our results, and describe some
future research that can be done on this topic.

2 Background

2.1 Labelled transition systems

Labelled transition systems are used in mCRL2 both as the formal semantics of
a given process description, and as an explicit data structure on which various
operations can be performed (in which case it must be finite). In the context of
this document, a labelled transition system is an edge-labelled directed multi-
graph with a designated initial node; formally, it is a tuple (S,A,→, s0) [?]
where:

• S is a set of states;

• A is a set of action labels;

• →⊆ S ×A× S is a transition relation;

• s0 ∈ S is the initial state.

2.2 Linear process specifications

The notion of linear process specifications forms a formalism for specifying pro-
cesses in the version of the Algebra of Communicating Processes used by the
mCRL2 toolset [?]. Specifically, a linear process specification is an equation of
the following form:

P (d⃗0) where P (d⃗ : D⃗) =
∑
i∈I

∑
e⃗:E⃗i

ci(d⃗, e⃗) → ai(f⃗i(d⃗, e⃗)) · P (g⃗i(d⃗, e⃗))

in which the variables d⃗ are called the process parameters, the values i in the
finite index set I are the summands of the process, the variables e⃗ are the
enumeration variables, the boolean expression ci in terms of d⃗ and e⃗ is the
condition for summand i, the term ai with arguments f⃗i in terms of d⃗ and e⃗
is the parameterized action label for summand i, the expressions g⃗i in terms
of d⃗ and e⃗ are the resulting state for summand i, and the expressions d⃗0 : D⃗
form the initial state. A linear process specification represents a (not necessarily

finite) labelled transition system with one state for each d⃗ : D⃗, with d⃗0 being

the initial state, in which each state d⃗ has an outgoing transition with action
label ai(f⃗i(d⃗, e⃗)) and target state g⃗i(d⃗, e⃗) for each i ∈ I, e⃗ ∈ E⃗i such that ci(d⃗, e⃗)
holds.

2

2.2.1 Example

As an example linear process specification, one can consider the following equa-
tion:

P (true, 0) where P (b : B, n : N) =
∑
m:N

b → red · P (false,m)

+ ¬b ∧ n > 0 → blue · P (b, n− 1)

+ ¬b ∧ n = 0 → red · P (true, n)

This describes a process that can perform red and blue actions, such that no
infinite sequence of blue actions is possible.

2.3 State space exploration

The process of state space exploration is the problem of computing, for a given
linear process specification, the reachable part of the labelled transition system
it represents — assuming this reachable part is finite. Since this is a standard
graph exploration problem, standard graph exploration algorithms like depth-
first search or breadth-first search can be used to solve it, given an algorithm
for computing the outgoing transitions for a given state.

To compute the set of outgoing transitions from a given state (also known as
the next-state set), mCRL2 currently uses the following algorithm:

Algorithm outgoing-transitions(d⃗)
1 R := ∅
2 for each i ∈ I
3 E := {e⃗ : E⃗i | ci(d⃗, e⃗)}
4 for each e⃗ ∈ E
5 A := ai(f⃗i(d⃗, e⃗))

6 S := gi(d⃗, e⃗)
7 R := R ∪ {(A,S)}
8 return R

At line 3, the (hopefully finite) enumeration E of terms matching the condition

ci is computed; at lines 5 and 6, two vectors of expressions f⃗i and g⃗i (together

called the transition arguments) are computed by substituting d⃗ and e⃗ in the
given expressions.

3 Enumeration caching

In the algorithm described in Section 2.3, both the computation of the enumer-
ation E and the transition arguments f⃗i and g⃗i are nontrivial computation steps

3

depending on the process parameters d⃗. For both types of computations, we
can analyze, based on the structure of the expressions involved, to what degree
the computation depends on the value of d⃗ and (for the transition arguments)
e⃗. Given this analysis, we can proceed to cache the results of all computations
performed (within the limits of memory constraints), and use the cached result
whenever we would otherwise perform a computation that only differs from a
cached entry in ways shown not to affect the outcome of the computation.

3.1 Enumeration caching

Since the enumeration computation at line 3 is typically the most expensive
computation step in a complete state space exploration instance, it is an attrac-
tive optimization target.

For a given i ∈ I, the value of E depends only on d⃗, which is a vector of inde-
pendent parameters (d1, . . . , dN). For each of those parameters dj , we can show
E does not depend on dj whenever dj simply does not occur in the (maximally
simplified) condition ci; clearly, when the condition ci does not depend on dj ,
then neither does the set of terms satisfying that condition. Hence, whenever
two values d⃗ differ only in the parameters not occurring in ci, we can conclude
that they must have the same value of E .

Using this notion, we can — for each i ∈ I — define a function keyi(d⃗) that,

for a given parameter vector d⃗, selects those parameters that occur in ci and
ignores the others:

keyi(d⃗) =
[
dj ∈ d⃗ | dj occurs in ci

]
For example, for d⃗ = [d1, d2, d3, d4] and ci = c(d1, d3, e⃗), keyi(d⃗) = [d1, d3]. It

now holds that for any d⃗1 and d⃗2 such that keyi(d⃗1) = keyi(d⃗2), it is also true

that {e⃗ : E⃗i | ci(d⃗1, e⃗)} = {e⃗ : E⃗i | ci(d⃗2, e⃗)}, for all i ∈ I. Moreover, since
the “occurs in” relation can be precomputed before starting the state space
exploration proper, the function value keyi(d⃗) is very inexpensive to compute.
This leads to the following algorithm that maintains a dictionary Mi for each
i ∈ I storing (keyi(d⃗), E) pairs:

Algorithm outgoing-transitions(d⃗)
1 R := ∅
2 for each i ∈ I
3 k := keyi(d⃗)
4 if Mi[k] defined
5 E := Mi[k]
6 else
7 E := {e⃗ : E⃗i | ci(d⃗, e⃗)}
8 Mi[k] := E
9 for each e⃗ ∈ E
10 A := ai(f⃗i(d⃗, e⃗))

11 S := gi(d⃗, e⃗)

4

12 R := R ∪ {(A,S)}
13 return R

Assuming the computation of simplifying the condition ci is performed perfectly,
and that therefore the only process parameters remaining in ci can indeed (for
suitable values of all other parameters) make the difference between the condi-
tion evaluating to true and it evaluating to false, this algorithm is optimal in
the sense that no other process parameters can be unconditionally ignored in
the computation of E . It can, however, be possible to cache E across different
values of a parameter occurring in the condition for particular values of other
variables; for example, for ci ≡ (d1 = 1 ∨ d2 = 2), the value of E can be used
for different values of d2 whenever d1 happens to have the value 1. This area
of techniques is outside the scope of this research, however, and is left as future
research.

3.2 Transition argument caching

Building on the structure introduced in Section 3.1, we can apply a similar
analysis to lines 5 and 6 of the original algorithm. Computing terms A and S
involves substituting d⃗ and e⃗ in the expression vectors f⃗i and g⃗i, and simplifying
the result; for each expression involved, we can determine what variables occur
in it. Occurring variables can be classified into three groups:

• process parameters that occur in the condition ci;

• process parameters that do not occur in the condition ci; and

• enumeration variables.

Based on which of those variables occur in a given expression, the resulting
expression can be shared across a different range:

• expressions that do not contain any variables at all are constants, and can
be trivially cached globally;

• expressions that only contain process parameters occurring in ci are equal
for all i-transitions for states sharing a value of E , and can therefore be
cached along with E ;

• expressions that only contain process parameters occurring in ci and enu-
meration variables are different for different i-transitions within a given
state, but equal among different states sharing a value of E , and can there-
fore be cached along with each particular e⃗ ∈ E ;

• expressions that contain process parameters not occurring in ci are differ-
ent for each state, and therefore cannot be cached at all.

This analysis leads to a fairly obvious extension of the algorithm from Section
3.1:

5

Algorithm outgoing-transitions(d⃗)
1 R := ∅
2 for each i ∈ I
3 h⃗ := f⃗i ++ g⃗i
4 k := keyi(d⃗)
5 if Mi[k] defined

6 (E ′, h⃗enum) := Mi[k]
7 else
8 E := {e⃗ : E⃗i | ci(d⃗, e⃗)}
9 E ′ := {(e⃗, pterm(⃗h, d⃗, e⃗)) | e⃗ ∈ E}
10 h⃗enum := penum(⃗h, d⃗)

11 Mi[k] := (E ′, h⃗enum)

12 for each (e⃗, h⃗term) ∈ E ′

13 h⃗none := pnone(⃗h, d⃗, e⃗)

14 construct A and S out of h⃗i,global, h⃗enum, h⃗term, h⃗none

15 R := R ∪ {(A,S)}
16 return R

Here, the three functions penum, pterm, and pnone respectively compute the sub-
sets of transition arguments in the second, third, and fourth category described
above, substituting the required values for d⃗ and e⃗. The vector h⃗i,global is the
precomputed analogous set representing the first category of constant transition
arguments for summand i.

3.3 Memory usage

Both algorithms described in this Section require O((|I|·|V |+|E|)·α), where |V |
and |E| are respectively the number of vertices (states) and edges (transitions)
in the generated labelled transition system, and α is the cache miss ratio, i.e.
the number of times line 8 is executed divided by the number of times line 4
is executed. This means that if the cache is functioning properly, i.e. when
α is low, memory usage is quite modest compared to the memory required to
store the generated labelled transition system. It also means that even when
the cache is not functioning properly — when α is close to 1, and most of the
cache bookkeeping is performed in vain because cache hits are rare — then
the memory used by the cache is comparable to the memory used to store the
resulting labelled transition system, which is significant but not unacceptably
large. Nonetheless, in situations where memory is tight, it might be useful to
implement some system to keep the memory usage from growing out of control.
The details of such a scheme are outside the scope of this paper, however.

3.4 Results

In order to test how well the algorithm described in Section 3.1 works in practice,
we implemented it as an extension to a version of the mCRL2 toolset and com-
pared its performance to the base version using the unmodified algorithm from

6

Section 2.3. For a number of selected systems, we performed a full state space
exploration, measuring the executing time of the exploration proper (excluding
the start-up time, as it is fairly constant and not influenced by the algorithm
used) for both implementations. We also measured the cache miss ratio for these
systems. Table 1 shows the ratio of the two execution times (which should be
more-or-less independent from machine-specific details) and the value 1/α.

The systems we used to test are the firewire protocol specification, available
as part of the official mCRL2 example set (“1394”); a description of a fault-
tolerant egg incubator device we have used in past projects (“incubator-2”);
and a version of incubator-2 that is structurally almost identical, but has a
much larger state space (“incubator-5”). These systems were chosen due to
having a practical size for testing, and being fairly representative.

System states transitions speedup factor 1/α
incubator-2 18803 46018 2.85 49.26
1394 197197 354155 29.6 212.5
incubator-5 11732672 53042671 6.19 117.5

Table 1: Performance measurements of the enumeration-caching algorithm relative to the base
algorithm.

Additionally, as documented in Table 2 we measured the gains of the transition-
argument-caching algorithm relative to the enumeration-caching algorithm, us-
ing the same procedure as above.

System speedup factor
incubator-2 1.12
1394 0.90
incubator-5 1.17

Table 2: Performance measurements of the transition-argument-caching algorithm relative to
the enumeration-caching algorithm.

A quick glance at Table 1 shows that enumeration caching does indeed work,
and that performance improvements of more than one order of magnitude are
possible for real-world systems. Unfortunately, the results for transition argu-
ment caching aren’t quite as straightforward; while Table 2 shows that modest
gains are possible, it also shows that the extra caching may actually by coun-
terproductive for less susceptible systems.

4 Summand pruning

4.1 Introduction

In Section 3, we detailed a technique to minimize the amount of work performed
to compute the outgoing transitions for a state as pertaining to a given sum-

7

mand. Even if the amount of time required for a single summand is optimized
to the point of being negligible, however, a complete state space exploration still
takes O(|V | · |I|) time in the best case merely to check each i ∈ I for each reach-
able state — even if the great majority of summands ends up not contributing
any transitions for each given state. This presents a problem for linear process
specifications containing large amounts of summands. To decrease this best-
case lower bound, some technique must be used to avoid visiting the bulk of the
available summands for most states. If we could show, for a given state d⃗, that
a set of summands J ⊆ I cannot contribute any transitions — by showing that
substitution of the state vector in the condition ci and simplifying it reduces
the condition to false without substituting anything for e⃗, for all i ∈ J — then
the entire set J could be disregarded without further notice for the given state.

To accomplish this, we can compute the subset of summands whose condition
does not necessarily reduce to false when substituting each prefix of the state
vector d⃗, caching the results along the way. In other words, we iteratively
compute (for given d⃗) {i ∈ I | ci(d1) ̸= false}, {i ∈ I | ci(d1, d2) ̸= false},
{i ∈ I | ci(d1, d2, d3) ̸= false}, . . ., {i ∈ I | ci(d⃗) ̸= false}, consulting the cache
for each computation; the final term represents the set of summands for which
enumeration proper is necessary.

To implement this, we can maintain a decision tree T in which each node repre-
sents a prefix [d1, . . . , dn] of a visited state vector, storing for this prefix the set
of not-necessarily-empty summands, and having as children those visited pre-
fixes obtained by adding a single value to the end, i.e. {[d1, . . . , dn, dn+1] | dn+1 :
Dn+1}; the root of this tree would represent the empty prefix, corresponding
to the full set of summands. With a tree node representing [d1, . . . , dn] imple-
mented as a tuple (W,J), where W is a dictionary mapping values from Dn+1

to children and J is the subset of not-necessarily-empty summands, this leads
to the following algorithm:

Algorithm outgoing-transitions(d⃗)
1 (W,J) := T

2 for each dn ∈ d⃗
3 if W [dn] not defined
4 J ′ := {j ∈ J | cj(d1, . . . , dn) ̸= false}
5 W [dn] := (∅, J ′)
6 (W,J) := W [dn]
7 R := ∅
8 for each i ∈ J
9 E := {e⃗ : E⃗i | ci(d⃗, e⃗)}
10 for each e⃗ ∈ E
11 A := ai(f⃗i(d⃗, e⃗))

12 S := gi(d⃗, e⃗)
13 R := R ∪ {(A,S)}
14 return R

Of course, the algorithm described in Section 3 can be substituted for the lower
half of the above algorithm to combine the two caching techniques; the two
techniques are independent.

8

4.2 Variable ordering

The performance of the above algorithm depends heavily on the order of the
process parameters; a process parameter near the beginning of the process pa-
rameter vector whose value doesn’t significantly help in disregarding summands
duplicates effort for no gain, whereas having a very influential parameter near
the end means its optimization potential is effectively wasted. Therefore, to
make the above algorithm useful, the process parameters should be ordered in
such a way that parameters that tend to reduce many conditions to false are near
the start, and parameters that don’t tend to reduce many conditions are near
the end (or are even disregarded entirely for the purpose of the summand prun-
ing algorithm). Intuitively, the parameters should be ordered by “influence”
on the summand conditions; unfortunately, no obvious formal interpretations of
this notion are evident.

This problem is reminiscent of the problem of variable ordering in the context of
Binary Decision Diagrams, and indeed many of the same concerns apply. Since
finding the optimal variable ordering for a binary decision diagram is generally
infeasible [?], applications using binary decision diagrams usually use heuristic
algorithms to find reasonably efficient variable orderings. We took the same
approach, experimenting with several simple heuristics, the details of which are
explained in Section 4.3.

4.3 Results

To test whether the summand pruning algorithm works in principle, we imple-
mented a version of it that does not perform any parameter reordering at all,
and tested its performance on an artificially constructed system known to be
susceptible to summand pruning. Specifically, we designed a system consisting
of 106 states and 116 summands, of which no more than 26 can generate any
transitions for each given state. Moreover, this system has the property that any
parameter ordering should produce equivalent results. Comparing the execu-
tion time of the state space exploration using the summand pruning algorithm
with the execution time using the unmodified algorithm described in Section
2.3, we found that the summand pruning algorithm explores this particular sys-
tem over 1500 times faster than the base algorithm. This shows beyond doubt
that summand pruning can indeed produce great performance improvements for
well-chosen variable orderings.

In order to apply summand pruning to more realistic systems for which the
process parameter ordering isn’t as fortune, we implemented several different
parameter ordering heuristics:

• an algorithm that simply counts, for each parameter, the number of sum-
mand conditions in which the variable occurs, sorting the summands by
this number in decreasing order and disregarding parameters for which
this value does not exceed a certain threshold (“occurrence count”);

9

• an algorithm that tries to predict the size of the reachable part of each
process parameter’s domain by analyzing each summand’s target state
expression vector, and applies the above algorithm scaled by this number
(“weighted occurrence count”);

• an algorithm that, for each each parameter-summand pair, structurally
analyzes the summand condition structure in search for subexpressions
that are likely to reduce the condition to false for particular values of the
parameter, such as dn = K for some constant K (“condition structure”);

• an algorithm that (like “weighted occurrence count”) enumerates reach-
able parts of parameter domains, substituting all resulting values in each
summand condition, in an attempt to directly measure the parameter’s
selectivity in isolation (“selectivity measures”).

For each of these algorithms, we measured its performance by measuring the
execution time (and comparing this to the execution time of the Section 2.3
algorithm) when applied to four different systems: the three systems used in
Section 3.4 (modified in such a way as to contain a relatively large amount
of summands and relatively few enumeration variables), as well as a similarly
processed model of the USB protocol (“usb”). Again, we calculated the ra-
tio of the execution time of the base algorithm and the execution time of the
summand-pruning algorithm.

Performance improvements relative to Section 2.3 algorithm
incubator-2 1394 incubator-5 usb

occurrence count 2.40 10.51 2.51 184.55
weighted occurrence count 2.40 44.04 2.51 57.30
condition structure 2.40 40.10 2.51 168.67
selectivity measures 2.40 29.17 2.39 0.89

Table 3: Performance measurements of the summand pruning algorithm using different vari-
able ordering heuristics relative to the base algorithm.

As Table 3 shows, summand pruning can indeed produce great performance
improvements for real-world systems. It also demonstrates that a proper pa-
rameter ordering greatly affects the efficiency of the algorithm, with a factor
200 performance difference between the most effective ordering and the least
effective ordering for the usb system. For this reason, future research on the
topic of how to improve parameter ordering heuristics appears to be warranted.

5 Conclusions and future work

In this paper, we have introduced the technique of enumeration caching to take
advantage of state similarity by minimizing the number of enumeration oper-
erations performed; we have seen that this technique can work well in practice,
observing improvements of almost a factor 30 in real-world state space explo-
ration problems. We have also introduced an extension to this technique that

10

aims to similarly minimize the computation of transition arguments, but for
this technique we have only seen modest improvements and even decreases in
performance.

Additionally, we have introduced the technique of summand pruning that aims
to minimize the amount of work performed on enumerating summands for which
it can be shown, based on state similarity, that the summand cannot produce
any transitions. We have seen that this can work very well for particular sys-
tems, with an observed improvement of a factor 1500 in computation time for a
constructed example. We have also seen that the effectivity of this scheme de-
pends greatly on the order of process parameters; moreover, we have seen that
relatively simple heuristics can already produce good results, with observed
performance improvements of a factor 184.

As shown in Section 4.3, the process parameter ordering strongly influences the
performance of the summand pruning algorithm. For that reason, it could be
worthwhile to investigate whether better ordering heuristics can be found. In
particular, the question of whether the techniques used in existing binary deci-
sion diagram implementations can be applied in this setting, and how well they
work. Furthermore, to support a practical implementation of the techniques
presented in this paper, the question of when to stop caching to avoid excessive
memory usage needs to be addressed.

11

