Process Library Implementation Notes

Wieger Wesselink
April 26, 2024

1 Process Library Implementation Notes

1.1 Processes

Process expressions in mCRL2 are expressions built according to the following syntax:

expression C++ equivalent ATerm grammar
a(e) action(a,e) Action
P(e) process(P,e) Process
P(d:=e) process_assignment(P,d:=e) ProcessAssignment
) delta() Delta
T tau() Tau
Z x sum(d,r) Sum
d
Op(x) block(B,z) Block
7(x) hide(B,x) Hide
pr(zT) rename(R,x) Rename
Teo(x) comm(C,z) Comm
V() allow(V ,x) Allow
x|y syne(x,y) Sync
Tt at_time(z,t) AtTime
Ty seq(x,y) Seq
c— if then(c,z) IfThen
c— oY if_then_else(c,z,y) IfThenElse
<Ly binit(z,y) Blnit
z |y merge(x,y) Merge
z ||y lmerge(z,y) LMerge
T+y choice(z,y) Choice

where the types of the symbols are as follows:

a,b strings (action names)
a process identifier
a sequence of data expressions
a sequence of data variables
a set of strings (action names)
a sequence of rename expressions
a sequence of communication expressions
a sequence of multi actions
a data expression of type real
T,y process expressions
c a data expression of type bool

!

=< Qmao

A rename expression is of the form a — b, with a and b action names. A multi action is of the form
ay | --+ | an, with a; actions. A communication expression is of the form by | -+ | b, — b, with b and b;
action names.

1.1.1 Restrictions

A multi action is a multi set of actions. The left hand sides of the communication expressions in C' must be
unique. Also the left hand sides of the rename expressions in R must be unique.

1.1.2 Linear process expressions

Linear process expressions are a subset of process expressions satisfying the following grammar:

<linear process expression> ::= choice(<linear process expression>, <linear process expression>)
| <summand>
<summand> ::= sum(<variables>, <alternative>)

| <conditional action prefix>
| <conditional deadlock>

<conditional action prefix> ::= if_then(<condition>, <action prefix>)
| <action prefix>

<action prefix> ::= seq(<timed multiaction>, <process reference>)
| <timed multiaction>

<timed multiaction> ::= at_time(<multiaction>, <time stamp>)
| <multiaction>

<multiaction> ::= tau()
| <action>

| sync(<multiaction>, <multiaction>)

<conditional deadlock> ::= if_then(<condition>, <timed deadlock>)
| <timed deadlock>

<timed deadlock> ::= delta()
| at_time(delta(), <time stamp>)

<process reference> ::= process(<process identifier>, <data expressions>)
| process_assignment(<process identifier>, <data assignments>)

1.2 Guarded process expressions

We define the predicate is_guarded for process expressions as follows: is_guarded(p) = is_guarded(p,)

1s_guarded(a(e), W) = true
is_guarded(6, W) = true
is_guarded(r, W) = true
false ifPeW
is_guarded(P(e), W) = { is_guarded(p, W U{P}) if P¢W

where P(d) = p is the equation corresponding to P(e)

is_guarded(p + q, W) = is_guarded(p, W) A is_guarded(q, W)
is_guarded(p - g, W) = is_guarded(p, W)
is_guarded(c — p, W) = is_guarded(p, W)
is_guarded(c = poq,W) = is_guarded(p, W) A is_guarded(q, W)
is_guarded(Xq.p p, W) = is_guarded(p, W)
is_guarded(p <t, W) = is_guarded(p, W)
is_guarded(p < q, W) = is_guarded(p, W)
is_guarded(p || ¢, W) = is_guarded(p, W) A is_guarded(q, W)
is_guarded(p || ¢, W) = is_guarded(p, W)
is_guarded(p | g, W) = is_guarded(p, W) A is_guarded(q, W)
is_guarded(pg(p), W) = is_guarded(p, W)
is_guarded(0p(p), W) = is_guarded(p, W)
is_guarded(t(p), W) = is_guarded(p, W)
is_guarded(Tc(p), W) = is_guarded(p, W)
is_guarded(Vy (p), W) = is_guarded(p, W)

N.B. This specification assumes that process names are unique. In mCRL2 process names can be overloaded,
therefore in the implemenation W contains process identifiers (i.e. both the process name and the sorts of
the arguments) instead of process names.

1.3 Alphabet reduction

Alphabet reduction is a preprocessing step for linearization. It is a transformation on process expressions
that preserves branching bisimulation.

1.3.1 Notations

In this text action names are represented using a, b, ... and multi action names using «, 8, ... So in general
we have & = a1 | ... | a,. In alphabet reduction data parameters play a minor role, therefore we choose
a notation in which data parameters are omitted. We use the abbreviation @ = a(ey, ..., e,) to denote an
action, and @ = @y | ... | @, to denote a multi action, where ey, ..., e, are data expressions.Note that a
multi action is a multiset (or bag) of actions and a multi action name is a multiset of names. We write a3
as shorthand for aU S and af3 for {a} U . Sets of multi action names are represented using A, Ay, Ao, ... A
communication C' maps multi action names to action names, and is denoted as {a; — a1,...,, = an}. A
renaming R is a substitution on action names, and is denoted as R = {a1 — b1,...,a, — b, }. A block set
B is a set of action names. A hide set I is a set of action names.

1.3.2 Definitions
We define multi actions @ using the following grammar:
a:=a ala,

where @ is an action, and where | is used to distinguish alternatives.
We define pCRL terms p using the following grammar:

pu=a i Pidi7ip+pip-prc—=pic—popiXgppipetip<Lp,
and parallel mCRL terms ¢ using the following grammar:
gx=piqllarglarala pr(e) 1 08(q) 171(q) 1 Tclq) 1 Vv(g).

Remark 1 Note that there is an unfortunate overload of the |-operator in both multi actions and process
expressions. This has consequences for the implementation, since it there is no clean distinction between
parallel and non-parallel operators.

Remark 2 The mCRL2 language also has a construct P(d;, = e;,,...,d;, = e;.), but this is just a
shorthand notation. Therefore we will ignore it in this text.

1.3.3 Alphabet operations

Let A, A; and As be sets of multi action names. Then we define

AS = {a|3B.aB € A}
A1 Ay = {Ozﬁ | a € A and XS AQ}
Al —~ Ay = {Oé ‘ EIBOZﬁ € Ay and B S AQ}

Note that 3 can take the value 7 in the definition of A4; «~ As, which implies A; C A; <~ Ay. The set AS
has an exponential size, so whenever possible it should not be computed explicitly.
Let C be a communication set, then we define

C(A) = UapeaComM(C, a)
C~Y(A) = UaeaCOMMINVERSE(C, «)
filtery (C, A) {y—=¢c€eC|3necay Ca}

where CoMM and COMMINVERSE are defined using pseudo code as follows:
CoMM(C, a)
R:={a}
for y - ce C do
if 38.a = By then R := RU ComM(C, Sc)
return R
COMMINVERSE(C, ai,02)
R = {alag}
for v - ce C do
if 38.a4 = Bc then R := RU COMMINVERSE(C, §,a27)
return R

Note that C~1(a) =COMMINVERSE(C, a,T).
Let R be a rename set, then we define

R@) = {R(a) | €a}

R a) = {B|R(B) =0}
R(A) = {R(Ot) | a € A}
RN A) = {R'(a)|acA}
Let I be a hide set, then we define
TI(A) = {ﬁ | HaeAmeI*a:B'Y/\ﬁﬁI:w}
TrH(A) = or(A)I*

Let B be a block set, then we define
Op(A)y={acA|lanB =0}
We define a mapping act that extracts the individual action names of a set of multi action names:
act(ay |...lan) = {ai|...|an}
act (A) = Uaea act(a)
1.3.4 The mapping «

We define the mapping « as follows. The value a(p, () is an over approximation of the alphabet of process
expression p.

aa, W) = {a}
tfPeW
a(P,W) = { alp, WU{P}) ifP¢Ww,
where P = p is the equation of P
a6, W) = 0
a(r, W) = {7}
alp+q,W) = a(p,W)Ualg, W)
alp-q, W) = a(p,W)Ua(q, W)
afec — p, W) = alp,W)
alc—=pog W) = alp,W)Ua(q, W)
a(Xq.pp, W) = alp,W)
afp<t, W) = ap,W)
alp < q, W) = a(p,W)Ua(q, W)
ap | ¢ W) = ap,W)ua(g, W)Ua(p, W)a(q, W)
alp |l ¢ W) = ap,W)Ua(g, W)U a(p, W)a(q, W)
alp|q, W) = a(p,W)a(q, W)
a(pr(p), W) = R(a(p,W))
a(95(p), W) = Jp(a(p,W))
a(TI(p)aW) = TI(Q(Z%W))
a(le(p), W) = Ca(p,W))
(Vv (p), W) alp, W)n(Vu{r})

Example 1
If C={a|b— c}, then a(Tc(a(l) | b(2))) = {a,b,c,a | b}. Note that the action ¢ does not occur in the
transition system of this process expression.

Example 2 In the computation of {a1,as2,...,a2}Na (a1 || az || ... || az0) the above mentioned optimiza-
tion is really needed.

1.3.5 Computation of the alphabet

When computing ANa(p, W) for some multi action name set A, it may be beneficial to apply an optimization.
This is done to keep intermediate expressions small. We introduce a(p, W, A) = AN a(p, W), and define it
as follows:

a@mway = {0 e

0 ifPewW
a(P,W, A) = { alp WU{P} A) ifP¢W,

where P = p is the equation of P

alp+q, W, A) = a(p,W,A)Ua(q, W, A)
a(pQ5M/7A) = Oé(p,WA) UQ(Q7WA)
a(c—p, W, A) = a(p,W,A)
alc—=pogW,A) = alp,W,A)Ual(q, W, A)
a(Xq4.pp, W, A) = a(p, W, A)
afpet,W, A) = a(p, W, A)
alp < q,W, A) = a(p,W,A)Ua(g, W, A)
a(p || ¢, W, A) = a(p, W, A) Ua(q, W, A) Ua(p, W, AS)a(q, W, AS)
alp g, W, A) = alp,W,A)Ua(q, W, A)Ua(p, W, A=)a(q, W, A=)
a(p | q, W, A) = a(p, W, AS)a(q, W, AS)

1.3.6 More efficient computation of the alphabet
The computation of a(p, W, A) can be done more efficiently. We define the function proc(p, W) as follows:

proc(a, W) =0

0 ifPeW
proc(P, W) - { {P}Uproc(p, W) it P¢WwW
proc(p+q,W) = proc(p, W) Uproc(q, W)
proc(p - ¢, W) = PTO (1% W) Uproc(q, W)
proc(c — p, W) = proc(p, W)
proc(c = poq,W) = proc(p, W)U proc(q, W)
proc(Eq.pp, W) = proc(p, W)
proc(p<t, W) = proc(p, W)

Using this function we can change the computation of a(p, W, A) at three places:

alp+q, W, A) = ap,W,A)Ua(q, W Uproc(p, W), A)
alp-q, W, A) = a(p,W,A)Ua(q, W Uproc(p, W), A)
alc—=poq,W,A) = alp,W,A)Ual(q, WU proc(p, W), A)

Note that the value proc(p, W) can be computed on the fly during the computation of a(p, W, A).

1.3.7 Bounded alphabet

In practice one often wants to compute a(p, A) = a(Va(p)). This can be computed more efficiently as
follows:

{a} ifacA
{ 0 ifag A
a(p, A), where P = p is the equation of P
a(p, A) Ua(g, A)
a(p, A)Ua(g, A)
a(p, A)
a(p, A) Ua(g, A)
a(p, A)
a(p, A)
a(p, A)Ua(q, A)
a(p, A) Ua(g, A) Ua(p, AS)a(g, A — a(p, A))
a(p, A) Ua(g, A) Ua(p, AS)a(g, A — a(p, A%))
a(p, AS)a(q, A — a(p, A%))
R(a(p, R7'(A)))
a(p,0p(A)
T1(a(p, 71 1 (A)))
Cla(p,C~1(A)))
alp, ANYV))

1.3.8 The mappings push, pushy and pushgy

We define mappings push, pushy and pushg such that push(p) is bisimulation equivalent to p, pushy (A4, p)

is bisimulation equivalent to V 4(p), and pushs(B,p) is bisimulation equivalent to 9g(p).

The goal of

these mappings is to push allow and block expressions deeply inside process expressions. It is important
to know that an allow set A in the expression V 4(p) implicitly contains the empty multi action 7. Let &

={Pi(d) = p1,...,Py(d) = p,} be a sequence of process equations.
push(p) = pif pis a pCRL expression
push(p || ¢) = push(p) |l push(q)
push(p| q) = push(p) | push(q)
push(p|q) = push(p)|push(q)
push(pr(p)) = pr(push(p))
push(9g(p)) = pusha(B,p)
push(ri(p)) = 7r(push(p))
push('c(p)) = T (push(p))
push(Vy(p)) = pushv(V,p)

We assume that PY, is a unique name for every P € {P,..., P,}, multi action name set A and sequence
of data expressions e.

_ a ifN@eAd
pushy (4,a) - 1) othegw)ise
PY (e), where P(d) = p is the equation of P, and

pushy (4, P () - Wﬁe(re) PY(d) = éu)shv (A,p) is a new equation
pushy (4, 9) = 4
pushy (A, T) = 7
pushy (A,p+q) = Valp+q)
pushy (A,p-q) = Valp-9)
pushy (A,¢c — p) = Va(lc—p)
pushy (A,c =+ pogq) = Valc—poq)
pushvy (A, X4.pp) = Va(Zapp)
pushy (A, p<t) = Va(p<t)
pushy (A,p < q) = Va(p<yq)
pushe(Aplla) = Valdp) where{ 7 = Pusho(d®p)

v AV ¢ = pushvgiCH)a(p) q)

/ / p" = pushy(A=,p
pUShV(Aap |_|_(J) = VA(A,p |_|_q) where ¢ = pUShv(ACH a(p) C])
_ A, p/ = pUShV(A_vp)

pUShV(A p | Q) = VA(A>p ‘ q) where ¢ = pushv(A — a(p’),q)
pushv (A, pr(p)) = pr(p’) where p’ = pushy(R™'(A),p)
pushv (A, d5(p)) = pushy(9p(A),p)
pushy (A, 71(p)) = 7/(p') where p' = pushy (77 (A),p)
pushy (4, Tc(p)) = allow(A,T¢(p')) where p' = pushy(C~1(A), p)
pushv (A, Vv (p)) = pushy(ANV,p),

Optimizations During the computation of pushy the following optimizations are applied in the right
hand side of each equation:

p it (Au{r}H Na(p) = alp)
Valp) = VAna(p)(p) otherwise
_ T ifp=r7
Vo (p) 6 otherwise
I'c (p) = Ffilterv (C,a(p)) (p)
5|6 = 0
5] d = ¢

For non pCRL expression the alphabet a(p) is computed on the fly during the computation of pushy (A, p).

Example 1 Let P = (a+b)-P. Then pushy ({a}, P,0) = P’, with P’ = pushv ({a},(a+0) - P,{(P,{a}, P")}) =

pushy ({a’}v (a + b)’ {(P7 {a}’ Pl)}) - pushy ({a}’ P, {(P’ {a}7 Pl>}) =-=a- P
Example 2 Let P = a-V {4} (P). Then pushy ({a}, P,0) = P’, with P’ = pushv ({a},a - V(o (P),{(P,{a}, P")}) =
pushy ({a}7a7 {(P, {a}v Pl)}) - pushy ({a}7 v{a}(P)7 {(P7 {a}7 P/)}) =--=a- P

We assume that Pie is a unique name for every P € {P,..., P, }, multi action name set A and sequence

of data expressions e.

pushy(B,a) _ a if N@nB=10

0 otherwise
Pj.(e)
pushg(B, P(e)) = where P(d) = p is the equation of P, and
where Pge(d) = pushg (B, p) is a new equation
pushy (B, 0) = 4 '
pushg (B, T) = 7T
pushy(B,p+q) = pushy(B,p) + pusho(B, q)
pushy(B,p - q) = pushy(B,p) - pusha(B, q)
pushy(B,c — p) = ¢ — pushy(B,p)
pushs(B,c = poq) = ¢ — pushy(B,p)opushy(B,q)
pusho (B, Xq.pp) = Xgppushy(B,p)
pusha(B,p<t) = pushy(B,p) <t
pushy(B,p < q) = pushy(B,p) < pushy(B,q)
pusha(B,p | q) = pushy (B,p) || pushs (B, q)
pushs(B,p | q) = pushy (B,p) || pushs (B, q)
pusha(B,p | q) = pushy (B,p) | pusha (B, q)
pusho(B, pr(p)) = pr(R(B),p
pushs(B, 0, (p)) = pusha(B By, p)
pusha(B(p) = 71 (pusha (B 1,p)
pushy(B,Tc(p)) = block(B,T'c (pushy (B’,p)) where B =B\ {b€ B|3,,cccbEyAc¢ B}
pu‘gha(7VV()) = pUShV(aB(A)7p7®)7
where B =0
1 =
block(B,p) = { gB(p) otherwise

Example 3 The presence of R~!(dp(A)) instead of just R™!(A) in the right hand side of the rename opera-
tor is explained by the example pushy ({b}, pyy_,c3b). We see that pg,_, ypushy (R7Y(A),p) = Piv—scypushy ({b},b) =
Pib—cyb = ¢, which is clearly the wrong answer.

1.3.9 Allow sets

There are two rules in the definition of pushy where the allow set can/should not be computed explicitly.
The computation of pushy (4, p || ¢) involves computation of pushy (p, Agj. We want to avoid the compu-
tation of A< since it can become very large. The computation of pushy (A, 77(p)) involves computation of
pushwv (p, Tl_l(A)j. The set 7, '(A) = AI* is infinite.

In the implementation we use allow sets of the form ASI*, where A is a set of multi action names and
I is a set of action names. The < is optional and I may be empty. Such an allow set is stored as two sets
A and I, together with an attribute that tells if < is appicable. We need to show that allow sets are closed

10

under the operations in pushy.

Op(ASTY)
7;11 (AQI*)
(ASI*)nVv
R (ASTY)
C~1 (AST7)
(AST*) —~ A,
(A51)=
Op(AT*)

7;11 (AI*)
(AI") NV
R-1(AI")
C—1(AIY)
(AI*)S

where we used the following properties:

Note that in case of the communication we only have an inclusion relation instead of equality.

N

N

o, (A)(TuL)*
{B€V|3acatr(B) =a}
R (AR YD
C~1(A)act (C71 (1))
AST*

*

I
N

2

N 1
L s s s

This is

done to stay within the format ASI*. As a consequence the implementation uses an over-approximation

of C7! (ASI*) and C~! (AI*). Furthermore note that the property R~ (AS)

= R~!(A)< does not hold.

A counter example is R = {b — a} and A = {a,b | ¢}. In that case we have R~! (4S) = {a,b,c}< and
R (A)S = {a,b}<. Another property that was initially assumed, but that does not hold is (AI*) « A; =

(A —T17(Ay)) I*.

11

1.4 Optimization for pushy

In some cases the pushy operator produces expressions that are too large. This section proposes an opti-
mization for the case pushv (A4, (p)) that can help to prevent this problem for certain practical cases.

pushv (A, Te(p) = { ;!LZQ(VAF’(Z?\C?;SUShVF(A/’ o) i)ft}?ezjvif;,
withC’'={8—=beC|b¢g U B}and A =((C\C")(A))S and
B'=beC
Py o= pushvrg % p))
1 o " = push

pushyr(4,C,p || q) = allow (A, I'c (allow (C’ (A), v || q))) where ?4, _ Ié 1(VF)C \ (ch) \A)
A" = (CTH(A) —~a() \ (CTH(A)\ 4)
p: = pushyr(4',C,p)

pushyr(4,C,p | q) = allow (A, I'c (allow (C’_l(A),p’ [Lq’))) where 214, i puSh(VF)(C \ (gfq)(A) \ A)
AT = (A)Ha(p))\(cfl(A)\A)
p: = pushyr(4’ g C,p)

pushyr(4,C,p | q) = allow (A, I'c (allow (C_l(A),p’ | q’))) where ?4, i %HS}L(VIS(A\ (gfq)(A) \ A)
A" (C7H(A) —~a@)) \ (C7'(A)\ 4)

pushyr(A,C,05(p)) = pushyr(9s(A),C,p)

pushyr(A4,C,Vy(p)) = pushvr(ANV,C,p)

pushyr (4, C,p) = allow(A4,T¢(p’)) where p’ = pushy(C~1(A), p) for all other cases of p

Note that in this case the allow set A has the general shape (Alg \ AS

I* (?7), with the subset operator C

optional, and with I possibly empty. To implement this optimization, it needs to be investigated if such a

set A is closed under the operations dp(A), T;ll (A), ANV, R71(4), C

12

“1(A), A — Ay, AS and C(A).

