LPS definitions and an ATerm representation format for

pCRL with multiactions and time

Jan Friso Groote Yaroslav S. Usenko

April 26, 2024

Contents

1

LPS definitions

A Aterm format for mCRL2 after parsing

Static Semantics and Well-formedness

B.1 Static semantics e
B.1.1 SSC of Specification
B.1.2 Process and Data Terms. (Sub-)Typing

Context Information

C.1 The signature of a specification
C.2 Variables e
C.3 Well-formed pyCRL specifications

ATerm representation format for MTLPSs

E ATerm representation format for LPSs (for uCRL v1)

F

ATerm representation format for input muCRL (for 4uCRL v1

=N NN

© 0o 3 O

) 12

1 LPS definitions
The equation below represents a Linear Process Equation for yCRL with multiactions and time
(MTLPS).
n() ,——, — —
)= Z ci(d-er) = a(Foo(den) | -~ |2} (Frno (d.01)) < ti(ds) - Xi(F (dr)
zGI
n —
+Z Z ¢i(dre3) = a0 (Fro(dre)) |+ 187D (Fru (s) <t (d)
jeJ e; B,
— —
+ Z Cg(d, 65) — ¢ t(s(d, 65)
es:Es

where I and J are disjoint.

Tt is possible to translate multiactions to regular yCRL actions (with longer parameter lists).
In this way a MTLPS can be translated to a TLPS, preserving equivalence. The TLPS that
corresponds to the above MTLPS is defined in the following way.

X(@D) =33 cildie)) = alal ... 2" (Fodrer)s ., fonio(drer)) < tild, er) - Xi(F] (s 1))

i€l TE
— n) T, —_— —
+ 303 ei(dey) = alat . At (Fodies), . gy (des)) < ti(des)
— —
+ Z es(d,es) = d<ts(d,es)
—
65:E5
where I and J are disjoint, and af_al_... ,a?(i) and a%_al_... 2" are new actions (for each i

and j), parameterized by the concatenation of the parameter lists of the contained actions.
YSU: TODO :USY formalize below

Theorem 1.1. Given MTLPS1 = (mCRL2) = MTLPS2,
TLPS(MTLPS1) = (timed merl) = TLPS(MTLPS2).

Time can be eliminated from TLPSs in a similar way (see page 106 of the thesis).

A Aterm format for mCRL2 after parsing

B Static Semantics and Well-formedness

In this section it is defined when a specification is correctly defined. We use the syntactical
categories from the previous section (in teletype font) to refer to items in a specification. If we
denote a concrete part of a specification, we prefer using the latex symbols, to increase readability.
The definitions below are an adapted copy from those in [?].

In essence the static semantics says that functions and terms are well typed, and some sorts
and functions are present in the specification. The validity of all static semantic requirements
can efficiently be decided for any specification.

A specification is well formed, if it satisfies the static semantic requirements, there are no
empty sorts and the sort Time is appropriately defined. We only give an operational semantics
to well-formed specifications.

B.1 Static semantics

A Specification must be internally consistent. This means that all objects that are used
must be declared exactly once and are used such that the sorts are correct. It also means that
action, process, constant and variable names cannot be confused. Furthermore, it means that
communications are specified in a functional way and that it is guaranteed that the terms used in
an equation are well-typed. Because all these properties can be statically decided, a specification
that is internally consistent is called SSC (Statically Semantically Correct). All next definitions
culminate in Definition ?7.

B.1.1 SSC of Specification

We assume that the specification has the form spec(sortspec?, opspec?, eqnspec?, actspec?, proscpec?, init)
(an easy transformation of the input aterm brings it to this form). All of the parameters are
optional except the last one (the minimal specification is spec(init(tau()))). Sometimes part of
the specification is not used. For example, any sort specification is useless unless some functions
are defined for them. And also functions specifications are useless if they do not occur in expres-
sions. Such specifications are still considered SSC, although an implementation of the checker
may issue a warning in such cases.
Let Sig be a signature and V be a set of variables over Sig. We define the predicate ‘is SSC
wrt. Sig’ inductively over the syntax of a Specification.

Sorts Sort declarations:
e A SortSpec SortSpec([sspecy, . .., sspec,,]) with m > 1 is SSC wrt. Sig iff

— all sspecy, ..., sspec,, are SSC wrt. Sig.

— Defined sort names are different: for alli < j, defined_sorts(sspec;) # defined _sorts(sspec;).

e A SortDecl SortDeclStandard([n - - - ny,]) with m > 1 is SSC wrt. Sig iff all nq, ..., n,, are
pairwise different.

e A SortDecl SortDeclRef(n,s) with m > 1 is SSC wrt. Sig iff the sort expression s is SSC
w.r.t Sig\ [n1 -+ n,]. Here we note that no recursive sort references are allowed.

e A SortDecl SortDeclStruct(n, [cons; ..., cons,,]) with m > 1 is SSC wrt. Sig iff all con-
structor expressions cons are SSC w.r.t Sig.

e A ConstDecl StructDeclCons(n, [proj; ..., proj,,]), k) with m > 0 is SSC wrt. Sig iff

— both n and k are not declared as function or map (or k == nil())

— all projection expressions proj are SSC w.r.t Sig.
e A ProjDecl StructDeclProj(n, Dom([sy - - - $;n])) with m > 1 is SSC wrt. Sig iff

— both n is not declared as function or map (or n == nil())

— sort expressions s are SSC w.r.t Sig

Data types

e A OpSpec

ConsSpec([IdDecls([ni1, ..., n11,],$1), - - -, IdDecls([m1, - - -, i, |, Sm)]) or
MapSpec([IdDecls([n11, - .., n11,], 1) - - -, LdDecls([m1, - - -, i, |, Sm)]) withm > 1,1; >
1, k; >0 for 1 <i<misSSC wrt. Sig iff

— forall 1 <i<mmn;,...,n,, are pairwise different,

— for all 1 <147 < m it holds that s; is SSC wrt. Sig.

— for all 1 < ¢ < j < m it holds that if n;, = njp for some 1 <k <[; and 1 < K < l;,

then typesig(si) 7é typesig(sj)7

e A EgnSpec of the form:

EqnSpec([IdDecls([n11, - -, n1,], 1), - - -, IdDecls([mas - - - Moty |, Sm)], (1)
[EqnSpec(dy,d}) ... EqnSpec(dx, dy,)]) (2)

withm >1,0; > 1, k; >0 for 1 <i < mis SSC wrt. Sig iff
— for all 1 <14,5 < m ny; are pairwise different,
for all 1 <i < m it holds that s; is SSC wrt. Sig.

for all 1 < j <k it holds that d; and d; is SSC wrt. Sig + ns.

for all 1 < j < k it holds that the types of d; and d] are uniquly compatible (wrt.
Sig).

Actions A ActSpec of the form:
ActSpec([ActDecl([n11, ..., n11,],d1) . .. ActDecl([m1, - - -, o, |, dm)]) with m > 1 is SSC wrt.
Sig iff

e for all 1 <i < m all n;; are pairwise different.
e none of them are in Sig.Fun U Sig. Map
e d; is Nil() or d; is Dom([s1, ..., sy]), and all s; are SSC wrt. Sig.

Processes

e A ProcSpec ProcSpec([ProcDecl(nq, varsi,p1), ..., ProcDecl(nm,, varsm,, pm)]) with m > 1
is SSC wrt. Sig iff

— for each 1 < i < j < m: if type(vars;) = type(vars;), then n; # nj,
— none of them are in Sig. Fun U Sig. Map U Sig.Act
— for each Name S’ it holds that n:S; x -+ x Sy — S’ ¢ Sig.Fun U Sig. Map,

— the Names 1, ...,z are pairwise different and {(z;:S;) | 1 < j < k} is a set of
variables over Sig,

— pis SSC wrt. Sig and {(z;:5;) | 1 <j < k}.
e A Init of the form Init(p) is SSC wrt. Sig iff p SSC wrt. to Sig and 0.
Definition B.1. Let E be a Specification. We say that E is SSC iff E is SSC wrt. Sig(E).

B.1.2 Process and Data Terms. (Sub-)Typing

Process terms Let Sig be a signature and V be a set of variables over Sig. We say that a
Process-term p is SSC wrt. to Sig and V iff one of the following hold:

e p=pi+p2, p=p1 || P2, p=p1llp2, p=p1| P2, p = p1-p2 or p = p1 K p2 and both p; and
po are SSC wrt. Sig and V,

e p=p;<dt>py and
— p1 and po are SSC wrt. Sig and V,

— tis SSC wrt. Sig and V and sortg;g v (t) = (Bool).

e p=p; <t and
— pip is SSC wrt. Sig and V
— t is SSC wrt. Sig and V and sortg;g,v(t) = Time.

ep=dorp=r.

e p= 8{711,...,71,,”}1?1 Or P ="T{n,,..n,}P1 with m > 1 and
— forall 1 <i#j <mn; Zny,
—for1<i<m,ifn;=mn;1|---|nik, then n;; € Sig. ActNames.
— pp is SSC wrt. Sig and V.

o p= V{nl,m’nm}pl with m > 1 and

— forall 1 <i < j <mn; #ny,
—for1 <i<m,ifn;=mn;1| | nik, then n;; € Sig. ActNames.
— p1 is SSC wrt. Sig and V.

®p= p{n1—>n’1,...,nm—>n;n}p1 and

— for 1 <1i < m both n;,n, € Sig.ActNames.
— for each 1 <14 < j < m it holds that n; # n;,

— for 1 <4 < m, the types of n; and n} are the same in Sig.
— p1 is SSC wrt. Sig and V.

p= F{n1—)n’1,..4,nm—>n;n}p1 and
—for1<i<m,ifn;=mn;1|--|nix then n;; € Sig.ActNames.
— for 1 <4 < m either n} € Sig. ActNames or n}, = 7.

— for each 1 <7 # j < m it holds that n; £ nj,

— for 1 <4 < m it holds that, if n, = n;1 | ---|n;, then the types of all n; ; and n} are
the same in Sig.

— p1 is SSC wrt. Sig and V.
e p=1X,9sp1 and iff

— W\{(2:5") | S’ is a Name}) U {(2:5)} is a set of variables over Sig,
— p1 is SSC wrt. Sig and (V\{(z:5") | S’ is a Name}) U {(x:5)}.

e p=n and n = p’ € Sig.Proc for some Process-term p’, or n € Sig.Act.
e p=n(ty,...,t,) with m > 1 and

— n(z1:s0rtgigv(t1), ..., Tmisortsigy(tm)) = p' € Sig.Proc for Names 1, ...,z and
Process-term p/, or n:sortgigy(t1) X - -+ X sortgigy(tm) € Sig.Act,

— for 1 <7 < m the Data-term t; is SSC wrt. Sig and V.
Sort expressions
e A SortExpr SortBool(), SortPos(), SortNat(), SortInt() are SSC.

e A SortExpr SortList(s), SortSet(s), SortBag(s) are SSC wrt. Sig iff sort expression s is SSC
wrt. Sig.

e A SortExpr SortRef(n) is SSC wrt. Sig iff n € Sorts(Sig).

e A SortExpr SortArrow(Dom([ni,...,ny]),n) with m > 1 is SSC wrt. Sig iff all sort ex-
pressions n are SSC w.r.t Sig.

Any sort expression that is SCC is also well-typed. L.e. it is impossible to specify an incorrectly
typed sort.

C Context Information

The context consists of two parts. The static part corresponds to the global information in
the specification. The dynamic part contains the definitions of the variables, and can change
depending on the scope. Given a context of a specification x, we denote the static context as
Sig(k) and the dynamic part as Vars(k). The static context is a tupple

(BasicSorts, DefinedSorts, Operations, Actions, Processes)

which represents the names and types of the sorts, operations, actions and processes defined in
the specification. The types of the context operatinos are defined below:

BasicSorts = {String}
DefinedSorts : String — Type
Operations € String x Type
Actions € String x Type
Processes : String — Type

The sort Type is a sort expression containing defined sorts, a list of such expressions, or the
empty type (unit type). It can be also unknown. The function basic Type : Type — Type unfolds
all occurrences of derived sort names in a type expression.

The variables are defined as a function from Variable name to a variable type Variables :
String — Type.

Data Terms Let Sig be a signature, and let V be a set of variables over Sig. A Data-term ¢
is called SSC wrt. Sig and V iff one of the following holds

e t =n with n a Name and (n:S) € V for some S, or n: — sortsis,v(n) € Sig. Fun U Sig. Map.

o t=n(t1,...,tn) (M > 1)and n:sortg;gv(t1) X- - - xXsortsig.v(tm) — sortsigv(n(t, ..., tm)) €
Sig.Fun U Sig.Map and all t; (1 <i <m) are SSC wrt. Sig and V.

The typing rules of the built-in data types can be defined as follows: As for the sort and
process expressions we introduce the following functions for data expressions: is_well_named —
all ids are defined, id_vars to identify the variables, types — all possible types the term can be,
is_well_typed — is the term well-typed?

The function Ty, is defined defined as (well-namedness of the arguments is assumed):

DataVar(String) type(k, String)
Opld(String) type(k, String)
Number(NumberString) PNI(NumberString)
ListEnum(do, . .., dy) Vi€ 0,n T(d;) = T(do) List(minC(T(do), . ,
SetEnum(do, . .., dy) Vi€ 0,n T(d;) = T(do) Set(minC(T(dp),..., T

BagEnum(BagEnumElt(dy, dy),
.,BagEnumElt(d,,,d})) Vi€ 0,n (T(d;) =¢ T(do) AT(d}) = PN) Bag(minC(T(dyp),...,

SetBagComp(ldDecl(v,), d) wt(k + (v, 8),d)A Set(s) if T,/ (d) = Bool
(T (d) = Bool V T+ (d) =¢ PN) Bag(s) it T, (d) = PN
DataApp(d, do, . .., dy) T(d)=A4y... Ay — B/\
T(do) =¢ AO A - (dn) =¢ B
Forall([ldsDecl(vg, 2 50), wt (s + (05, 50, - - wn, $n), d) Bool
IdsDecI(s Sn)], d) AT (d) = Bool
Exists([ldsDecI(U, $ 50), wt(k + (05, S0, - - ., Uny S), d) Bool
., IdsDecl(y,, 5,)], d) AT, (d) = Bool
Bool
Lambda([ldsDecl(wg, so),
., ldsDecl(vy,, s,,)], d) wt(k + (05, S0, - ., Uny $n), d) séen(%),...,sfn(m) — Ty (d)
Whr(d, [vg, do, - - -, Un, dn]) wt(k + (v, T(do), - - -, Un, T(dp)), d) T, (d

The following internal, or system, identifiers have the corresponding (polymorphic) types:

EmptyList() List(TypeAny)
EmptySetBag() SB(TypeAny)
NotOrCompl(d) T(d) = Bool V T(d) = SB(TypeAny) T(d)

Neg(d) T(d) = PNI Int

Size(d) T(d) =¢ LSB(TypeAny) Nat

ListAt(d,d’) T(d) = List(TypeAny) AT(d'") =, PN ListArg(d)

Div(d, d) T(d) =, PNI =, T(d') div(PNI)

Mod(d, ') T(d) =, PNI AT(d') =, Pos mod(PNT)
MultOrlintersect(d,d’) (T(d) =¢ PNI V T(d) =; SB(TypeAny)) mazMolI(T(d),T(d"))
AddOrUnion(d, d") AT(d) = T(d')

SubtOrDiff(d, ')

LTOrPropSubset(d, d’) Bool
GTOrPropSupset(d, d’) Bool

LTEOrSubset(d, d’) Bool

GTEOrSupSet(d, d’) Bool

In(d,d") LSB(T(d)) = T(d') Bool

Cons(d, d’) List(T(d)) = T(d') maz(List(T(d)), T(d"))
Snoc(d,d") List(T(d)) =; T(d) maz(List(T(d")), T(d))
Concat(d, d’) T(d) = List(TypeAny) =, T(d') List(maz(T(d), T(d")))
EqNeq(d,d") T(d) = T(d") Bool

True() Bool

False(Bool

Imp(d,d’) T(d) = T(d') = Bool

And(d,d) T(d) =, T(d') = Bool

C.1 The signature of a specification

Definition C.1. The signature Sig(F) of a Specification E consists of a seven-tuple

(Sort, Fun, Map, Act, Comm, Proc, Init)

where each component is a set containing all elements of a main syntactical category declared in

E. The signature Sig(E) of E is inductively defined as follows:

e If F =sort ny---n,, with m > 1, then Sig(F) def {ni, o smm},0,0,0,0,0,0).
o If E= :fd— - fd, withm > 1, then Sig(E) % (0, Fun,0,0,0,0,0), where
Fun & {nij: = Si | fd; =np, ... ,ng: — 5,1 <i<m,1<j <[}
U {nijISﬂX“'XSiki—)Si|
fd; =mng, .00 ma0Sin X - X S, = 85,1 <i<m, 1< <[}

e If E =map md; -

Map = {n;j:— S;| md; =na,...,
U {nij:Sil X e X Siki — S; |
mdi Enil,...,nili:Sil Xoeee

md.,, with m > 1, then Sig(E)

(0,0, Map, 0,0, 0, 0), where

nlll—>51,1§2§m,1§j§lz}

X Sik, = Si, 1 <i<m,1<j <[}

If F is a Equation-specification, then Sig(F) def (0,0,0,0,0,0,0).

o If E= ady---ady,, with m > 1, then Sig(F) def (@,0,0, Act,0,0,0), where
def .
Act = {n;|ad;=n;1<i<m}
U {nijZSﬂ X X Sl]ﬁ |
ad,Enn,,nmSvl Xoewe XSzkl,ISZSm,l S]Slz}

o If £ =comm cd; - cd,, with m > 1, then Sig(FE) o (0,0,0,0,{cd; | 1 <i<m},0,0).

If E = proc pd; - - - pd,,, with m > 1, then Sig(E) dof (0,0,0,0,0,{pd; | 1 <i<m}0).

e If £ = init pe then Sig(E) def (0,0,0,0,0,0,{pe}).

o If £ = E; E> with Sig(E;) = (Sort;, Fun;, Map,, Act;, Comm,, Proc;, Init;) for i = 1,2,
then

Sig(E) def (Sorty U Sorte, Funy U Fung, Map, U Map,,
Acty U Acty, Commq U Comms, Procy U Proca, Inity U Initsy).

Definition C.2. Let Sig = (Sort, Fun, Map, Act, Comm, Proc, Init) be a signature. We write

Sig.Sort for Sort, Sig.Fun for Fun, Sig.Map for Map, Sig.Act for Act,
Sig.Comm for Comm, Sig.Proc for Proc, Sig.Init for Init.
C.2 Variables

Variables play an important role in specifications. The next definition says given a specification
E, which elements from Name can play the role of a variable without confusion with defined
constants. Moreover, variables must have an unambiguous and declared sort.

Definition C.3. Let Sig be a signature. A set V containing pairs (2:S) with z and S from
Name, is called a set of variables over Sig iff for each (z:S5) € V:

e for each Name S’ and Process-term p it holds that z: — S’ ¢ Sig.Fun U Sig.Map, x ¢
Sig.Act and x = p ¢ Sig.Proc,

e S e Sig.Sort,
e for each Name S’ such that S’ # S it holds that (z:S") ¢ V.

Definition C.4. Let vd be a Variable-declaration. The function Vars is defined by:

def U if vd is empty,
Vars(vd) = ¢ {(z:;:8:) |1 <i<m,
1<ji<l} ifod=var x11,...,215,:51 -« Tmly .o Tonl,, :Sm-

In the following definitions we give functions yielding the sort of and the variables in a
Data-term ¢.

Definition C.5. Let ¢ be a data-term and Sig a signature. Let V be a set of variables over
Sig. We define:

(S) if t =2 and (x:5) € V,

(S) if t=n, n: = S € Sig.Fun U Sig.Map or in constructors.

(Pos, Nat, Int) if ¢ = Number(n), n >0

(Nat, Int) if ¢ = Number(0)

(Int) if t = Number(n), n <0

sortss v(t) def) (Bool) if t = True() or t = False()
gV and for no S’ £ S n: — S’ € Sig.Fun U Sig. Map,

S if £ =n(t,... tm),
n:sortgigy(ti1) X -+ X sortgigy(tm) = S € Sig.Fun U Sig.Map
and for no S" # S n:sortgig v (ti) X -+ X sortgigv(tm) —
S’ € Sig.Fun U Sig.Map,

L otherwise.

If a variable or a function is not or inappropriately declared no answer can be obtained. In
this case | results.

Definition C.6. Let Sig be a signature, V a set of variables over Sig and let ¢t be a Data-term.

{{x:S)} if t =z and (x:S) € V,
Varsig v(t) def 0 ift=mnand n: — S € Sig.Fun U Sig. Map,
o7 sigV U1<i<m VaTSiQ»V(ti) ift= n(tlv s 7tm)7
{1} otherwise.

We call a Data-term ¢ closed wrt. a signature Sig and a set of variables V iff Vargiq v (t) = 0.
Note that Varg;gv(t) € V U{L} for any data-term ¢t. If L€ Varg,, y(t), then due to some
missing or inappropriate declaration it can not be determined what the variables of ¢ are on
basis of Sig and V.

C.3

Well-formed pCRL specifications

We define what well-formed specifications are. We only provide well-formed Specifications
with a semantics. Well-formedness is a decidable property.

Definition C.7. Let Sig be a signature. We call a Name S a constructor sort iff S € Sig.Sort
and there exists Names S1,..., Sk, f (k> 0) such that f:S1 x -+ x S, — S € Sig.Fun.

Definition C.8. Let E be a Specification that is SSC. We inductively define which sorts are
non empty constructor sortsin E. A constructor sort S is called non empty iff there is a function
fiS1 x -+ xS, = 8 € Sig.Fun (k > 0) such that for all 1 < i < k if S; is a constructor sort,
it is non empty. We say that E has no empty constructor sorts iff each constructor sort is non
empty.

Definition C.9. Let E be a Specification. F is called well-formed iff

E is SSC,

F has no empty constructor sorts,

There is no indirect set, bag, or list recursion. A=Set(B), B=Ref(A).

There is no empty sort due to nonterminating struct recursion. C=struct(leaf(C),node(C,C))

If Time € Sig(E).Sort, then 0: — Time € Sig(E).Fun U Sig(E).Map and < :Time x
Time — Bool € Sig(E).Map.

10

D ATerm representation format for MTLPSs

A MTLPS is stored as an ATerm with the following functions. The sort of stored MTLPS is
MTLPS.

spec2gen : DataTypes X ActionSpec™ x InitProcSpec — MTLPS
actspec : String x String™ — ActionSpec

initprocspec : TermAppl x Variable® x Summand™ — InitProcSpec
smd : Variable® x Action® x Time x IndexedTerm™ x TermAppl — Summand
act : String X TermAppl — Action

time : TermAppl — Time

notime :— Time

it : Nat x TermAppl — IndexedTerm

dc : Nat — IndexedTerm

d : Signature x Equation™ — DataTypes

e : Variable™ x TermAppl x TermAppl x TermAppl — Equation
v : String x String — Variable

s : String”™ x Function™ x Function™ — Signature

f : String x String®™ x String — Function

The sort TermAppl consists of ATerm terms of the form TermAppl(f,t) or constant/variable
symbols. The sort String consists of quoted constants, i.e. function symbols of arity 0. The sort
Nat is the built-in sort of natural numbers in the ATerm library. The list of elements of sort D
is denoted by D*.

The constructor of sort InitProcSpec contains the actual LPS parameters (from init) as the
first parameter, the formal LPS parameters as the second argument, and the list of summands
as the third parameter. The third parameter of smd is the term of sort Time representing the
time at which the multiaction happens, or notime, indicating that no time info is given. The last
parameter of smd is the boolean term representing the condition.

The second parameter of e is the boolean condition used for conditional term rewriting.

The first parameter of v is the variable name, appended with ’#’. The first parameter of f is
the function name, appended with its parameter types list, separated by '#’ (for constants only
'#’ is appended).

If the delta summand of the TLPS is present, § has to be represented by the ATerm string
"Delta", and actions with this name should not be allowed. An alternative is in using a special
summand construction.

11

E ATerm representation format for LPSs (for uCRL v1)

An LPS is stored as an ATerm with the following functions. The sort of stored LPS is LPS.

spec2gen : DataTypes x InitProcSpec — LPS

initprocspec : Term™ x Variable® x Summand™ — InitProcSpec

smd : Variable® x String x Term™ x NextState x Term — Summand
terminated :— NextState

i : Term™ — NextState

d : Signature x Equation™ — DataTypes

e : Variable® x Term x Term — Equation

v : String x String — Variable

s : String™ x Function™ x Function™ — Signature

f : String x String™ x String — Function

The sort Term consists of arbitrary ATerm terms where all function symbols must be quoted.
The sort String consists of quoted constants, i.e. function symbols of arity 0. The list of elements
of sort D is denoted by D*.

The first parameter of v is the variable name, appended with '#’. The first parameter of f is
the function name, appended with its parameter types list, separated by '#’ (for constants only
'#’ is appended).

The constructor of sort InitProcSpec contains the actual LPS parameters (from init) as the
first parameter, the formal LPS parameters as the second argument, and the list of summands as
the third parameter. The last parameter of cmd is the boolean term representing the condition.

12

F ATerm representation format for input muCRL (for pyCRL
vl)

An LPS is stored as an ATerm with the following functions. The sort of stored LPS is LPS.

spec2gen : DataTypes x InitProcSpec — LPS

initprocspec : Term™ x Variable™ x Summand™ — InitProcSpec

smd : Variable® x String x Term* x NextState x Term — Summand
terminated :— NextState

i : Term®™ — NextState

d : Signature x Equation™ — DataTypes

e : Variable® x Term x Term — Equation

v : String x String — Variable

s : String™ x Function™ x Function™ — Signature

f : String x String™ x String — Function

The sort Term consists of arbitrary ATerm terms where all function symbols must be quoted.
The sort String consists of quoted constants, i.e. function symbols of arity 0. The list of elements
of sort D is denoted by D*.

The first parameter of v is the variable name, appended with '#’. The first parameter of f is
the function name, appended with its parameter types list, separated by '#’ (for constants only
'#’ is appended).

The constructor of sort InitProcSpec contains the actual LPS parameters (from init) as the
first parameter, the formal LPS parameters as the second argument, and the list of summands as
the third parameter. The last parameter of cmd is the boolean term representing the condition.

13

