
1 Introduction

This document describes the algorithm for branching bisimulation reduction, including the algorithm that
is used to generate counterexamples.

2 A partitioner for branching bisimulation

The partitioner for branching bisimulation calculates whether states are bisimilar, branching bisimilar and
stuttering preserving branching bisimilar. It gets a state space and divides it into a number of non-intersecting
subsets of states called blocks. All states in a block are bisimilar and have the same block index. Using this
index it is straightforward to calculate whether two states are equivalent (they have the same index) or to
construct the state space modulo this equivalence.

The algorithm works exactly as described in [2]. As a preprocessing step for (divergence preserving)
branching bisimulation all states that are strongly connected via internal transitions are replaced by a single
state. In case of divergence preserving branching bisimulation this state gets a tau loop. In case of ordinary
branching bisimulation, there will not be a tau loop.

Then the algorithm for branching bisimulation is started. The state space is partitioned into blocks.
Initially, all states are put in one block. Repeatedly, a block is split in two blocks until the partitioning has
become stable. For details see [2].

Furthermore, there is an option to obtain counter formulas for two non bisimilar state. The algorithm
for this is inspired by [1, 3].

Given two non bisimilar states s, t ∈ S, where S is the set of all states. A distinguishing formula is a
formula ϕ in Hennessy-Milner logic such that s |= ϕ and t ̸|= ϕ. For branching bisimulation there is always
a distinguishing formula in the Hennessy-Milner logic extended with the regular ⟨τ∗⟩, and using the regular
formula ⟨τ + nil⟩ϕ := ⟨τ⟩ϕ ∨ ϕ.

Following [4, 5] we implement the computation of minimal depth distinguishing formulas. In the imple-
mentation two things can be noted different from the references with the theoretical background.

Filtering There is one post-processing step we call backwards filtering. It deals with the following scenario.
Consider the transition systems depicted in Figure 1. We consider the scenario of computing a distin-

guishing formula ϕ(s, t) for the states s and t. By the partitioning algorithm we know that the transition

s
a−→ s1 is a distinguishing observation. The algorithm has to recursively find the distinguishing formula ϕ′

such that s1 ∈ Jϕ′K and t1, t2 ̸∈ Jϕ′K. This way s ∈ J⟨a⟩ϕ′K and t ̸∈ J⟨a⟩ϕ′K.
The algorithm starts by recursively computing a distinguishing formula for s1 and t1. It might compute

ϕ(s1, t1) = ⟨a⟩true. Since t2 ∈ J⟨a⟩trueK, it also computes the distinguishing formula ϕ(s1, t2) = ⟨b⟩true.
This results in the formula ϕ(s, t) = ⟨a⟩(⟨a⟩true ∧ ⟨b⟩true). We see that the addition of the conjunct
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Figure 1: Two LTSs with initial state s and t respectively.
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ϕ(s1, t2) = ⟨b⟩true made the first conjunct ϕ(s1, t1) obsolete (since t1 ̸∈ J⟨b⟩trueK). This scenario is very hard
to prevent a priori.

To prevent a distinguishing formula with unnecessary conjuncts each conjunct is reconsidered in a FIFO
style. We compute the semantics of all other conjuncts and see if it still achieves the goal. If this is the case,
we can safely remove that specific conjunct.

Minimal depth partitioning for branching bisimulation According to [5] we compute the partitions
conform the correct k-depth relations. Given the partition πi on level i we want to construct πi+1 such that
it stable w.r.t. the following signatures.

sig(s, πi) := {(B, a,B′) | s τ∗

−→ s′
a−→ s′′,where s′ ∈ B ∈ πi, s

′′ ∈ B′ ∈ πi and (B ̸= B′ ∨ a ̸= τ)}

Performing this partitioning step efficiently is not obvious. We implemented the following algorithm.
This algorithm only works since we removed strongly connected τ components in the preprocessing, hence
there are no τ cycles.

1: frontier := {s | s
τ

̸−→}
2: done := ∅
3: while frontier ̸= ∅ do
4: s := frontier.pop front()

5: signature := {(B, a,B′) | s a−→ s′ s.t. s ∈ B, s′ ∈ B′, and B,B′ ∈ πi and (a ̸= τ ∨B ̸= B′)}
6: for all s

τ−→ s′ do
7: signature := signature ∪ sigs[s′]
8: end for
9: sigs[s] := signature

10: done := done ∪ {s}
11: for all sp

τ−→ s do

12: if {s′ | sp
τ−→ s′} \ done = ∅ then

13: frontier.push back(sp)
14: end if
15: end for
16: end while
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