
Symbolic Reachability using LDDs

Wieger Wesselink and Maurice Laveaux

April 26, 2024

1 Introduction

In this document we describe a symbolic reachability algorithm that uses list decision diagrams (LDDs) to
store states and transitions. It is based on the work in [?] and [?].

1.1 Definitions

Let S be a set of states, and R ⊆ S × S a transition relation. There is a transition from x to y if (x, y) ∈ R.
We assume that the set of states S is a Cartesian product

S = S1 × . . .× Sm

In other words, states are vectors of m elements.

Definition 1. The domain of a relation R is defined as

domain(R) = {x ∈ S | ∃y ∈ S : (x, y) ∈ R}

Definition 2. The function next returns the successors of an element x ∈ S:

next(R, x) = {y ∈ S | (x, y) ∈ R}

It can be lifted to a subset X ⊆ S using

next(R,X) = ∪{next(R, x) | x ∈ X}

Definition 3. The set of reachable states that can be reached from an initial state x ∈ S is defined as

reachable states(R, x) = {y ∈ S | ∃n ≥ 0 : (x, y) ∈ Rn}

2 Read, write and copy parameters

In [?] three types of dependencies for the parameters of a relation are distinguished: read dependence (whether
the value of a parameter influences transitions), must-write dependence (whether a parameter is written to),
and may-write dependence (whether a parameter may be written to, depending on the value of some other
parameter). The may-write versus must-write distinction is introduced for arrays, that do not exist in
mCRL2. So for our use cases may- and must-write dependence coincide, and we will refer to it as write
dependence instead.

Before we formalize the notions read independent and write independent, it is important to understand the
application that they are used for. We assume that we have a sparse relation R that is defined as a set of

1

pairs (x, y) with x, y ∈ S. Our goal is to define the notions read and write independent such that the values
of read and write independent parameters are not needed for the successor computation of R. So for the
values xi, yi corresponding to a read independent parameter di we do not need to store value xi, and for the
values corresponding to a write independent parameter we do not need to store the value yi.

In order to satisfy these requirements we define a read independent parameter as a parameter whose
value is always copied (yi = xi), or mapped to a constant value (yi = c). However, this is not enough for
being able to discard the value of such a parameter. In addition, the corresponding transition has to be
enabled for any value in its domain. We define a write independent parameter as a parameter whose value
is always copied (yi = xi).

Definition 4. For a vector x = [x1, . . . , xm] ∈ S we define the following notation for updating the element
at position i with value y ∈ Si:

x[i = y] = [x1, . . . , xi−1, y, xi+1, . . . , xm]

We lift this definition to a set as follows. Let I = {i1, . . . ik} with 1 ≤ i1 < . . . < ik ≤ m be a set of parameter
indices, and y ∈ Si1 × . . .× Sik . Then

x[I = y] = z with zr =

{
xr if r /∈ I
yr otherwise

Definition 5.

always copy(R, i) = (∀(x, y) ∈ R : xi = yi) ∧ (∀(x, y) ∈ R, d ∈ Si : (x[i = d], y[i = d]) ∈ R)

Definition 6.

always constant(R, i) = (∃d ∈ Si : ∀(x, y) ∈ R : yi = d) ∧ (∀(x, y) ∈ R, d ∈ Si : (x[i = d], y) ∈ R)

Definition 7.
read independent(R, i) = always copy(R, i) ∨ always constant(R, i)

Definition 8.
write independent(R, i) = ∀(x, y) ∈ R : xi = yi

Note that our definitions differ slightly from the ones in [?], but they are equivalent. To illustrate these
definitions, consider the following example.

Example 9. Let S = N × N × N and let R be a relation on the variables x1, x2 and x3 defined by the
statement

if x3 > 4 then begin x2 := 3 end

In this case x1 is both read and write independent, x2 is read independent, and x3 is write independent. Even
though the value of x3 is always copied, we do not consider it read independent. This is because for values
x3 ≤ 4 the transition is not enabled, and this information would be lost if we discard those values from the
transition relation. Now instead of storing the transition ((1, 2, 5), (1, 3, 5)), we only need to store ((5), (3))
to be able to derive that a transition from (1, 2, 5) to (1, 3, 5) is possible.

Read and write parameters are defined using

Definition 10.
read(R, i) = ¬read independent(R, i)

Definition 11.
write(R, i) = ¬write independent(R, i)

2

Definition 12.
read parameters(R) = {i | read(R, i)}

Definition 13.
write parameters(R) = {i | write(R, i)}

Now let us consider an mCRL2 summand P of the following shape:

P (d) = c(d)→ a(f(d)).P (g(d))

For such a summand [?] defines the following approximations of read and write parameters:

reads(P, i) =
di ∈ freevars(c(d)) ∨
(di ∈ freevars(gi(d)) ∧ di ̸= gi(d)) ∨
∃1 ≤ k ≤ m : (di ∈ freevars(gk(d)) ∧ i ̸= k)

writes(P, i) = (di ̸= gi)

Indeed we have reads(P, i)⇒ read(P, i) and writes(P, i)⇒ write(P, i).

3

3 List Decision Diagrams

A List Decision Diagram (LDD) is a DAG. It has two types of leaf nodes, false and true, or 0 and 1. The
third type of node has a label a and two successors down and right, or = and >. An LDD represents a set
of lists, as follows:

JfalseK = ∅
JtrueK = {[]}
Jnode(v, down, right)K = {vx | x ∈ JdownK} ∪ JrightK

In [?] an LDD is defined as

Definition 14. A List decision diagram (LDD) is a directed acyclic graph with the following properties:

1. There is a single root node and two terminal nodes 0 and 1.

2. Each non-terminal node p is labeled with a value v, denoted by val(p) = v, and has two outgoing edges
labeled = and > that point to nodes denoted by p[xi = v] and p[xi > v].

3. For all non-terminal nodes p, p[xi = v] ̸= 0 and p[xi > v] ̸= 1.

4. For all non-terminal nodes p, val(p[xi > v]) > v.

5. There are no duplicate nodes.

LDDs are well suited to store lists that differ in only a few positions. Consider the transition relation R on
S = N10 with initial state x = [0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0], that is defined by

if x5 > 0 then begin x5 := x5 − 1;x6 := x6 + 1 end

Clearly this is a sparse relation with used(R) = {5, 6}. The state space consists of 11 states that differ
only in the 5th and 6th parameter. It can be compactly represented using an LDD, see the figure below.
For our applications we use the LDD implementation that is part of the Sylvan multi-core framework for
decision diagrams, see [?].

4

0

0

0

0

0 1 2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1 0

0

0

0

0

5

4 Reachability

4.1 Computing the set of reachable states

A straightforward algorithm to compute the set of reachable states from an initial state x ∈ S is the following.

Algorithm 1 Reachability

1: function ReachableStates(R, x)
2: visited := {x}
3: todo := {x}
4: while todo ̸= ∅ do
5: todo := next(R, todo) \ visited
6: visited := visited ∪ todo
7: return visited

There are two bottlenecks in this algorithm. First of all the set visited may be large and therefore consume
a lot of memory. Second, the computation of next(R, todo) may become expensive once todo becomes large.

4.2 Reachability with learning

To reduce the memory usage, we store the sets visited and todo using LDDs. It is not always feasible to
store the entire transition relation R using LDDs, because it may be huge or even have infinite size. To deal
with this, we only store the subset L of R that is necessary for the reachability computation in an LDD.
The relation L is computed (learned) on the fly.

Algorithm 2 Reachability with learning

1: function ReachableStates(R, x)
2: visited := {x}
3: todo := {x}
4: L := ∅ ▷ L is the learned relation
5: while todo ̸= ∅ do
6: L := L ∪ {(x, y) ∈ R | x ∈ todo} ▷ This operation is expensive
7: todo := next(L, todo) \ visited ▷ This operation is cheap
8: visited := visited ∪ todo
9: return visited

6

4.3 Reachability of a sparse relation

Suppose that we have a sparse relation R, i.e. the number of read and write parameters is small. In that
case we can use projections to increase the efficiency.

Definition 15. The projection of a state x ∈ S with respect to a set of parameter indices {i1, . . . ik} with
1 ≤ i1 < . . . < ik ≤ m is defined as

project(x, {i1, . . . , ik}) = (xi1 , . . . , xik)

We lift this to a relation R with read parameter indices Ir and write parameter indices Iw as follows:

project(R, Ir, Iw) = {(project(x, Ir), project(y, Iw)) | (x, y) ∈ R}

The application of a projected relation to an unprojected state is defined using the function relprod. The
Sylvan function relprod implements this, or something similar.

Definition 16. Let R be a relation with read parameter indices Ir and write parameter indices Iw, let x ∈ S
and let R̂ = project(R, Ir, Iw). Then we define

relprod(R̂, x, Ir, Iw) = {x[Iw = ŷ] | project(x, Ir) = x̂ ∧ (x̂, ŷ) ∈ R̂}

relprev(R̂, y, Ir, Iw, X) = {x ∈ X | y ∈ relprod(R̂, x, Ir, Iw)}

Algorithm 3 Reachability of a sparse relation using projections

1: function ReachableStates(R, x)
2: visited := {x}
3: todo := {x}
4: L := ∅ ▷ L is a projected relation
5: Ir, Iw := read parameters(R),write parameters(R)
6: while todo ̸= ∅ do
7: L := L ∪ project({(x, y) ∈ R | x ∈ todo}, Ir, Iw)
8: todo := relprod(L, todo, Ir, Iw) \ visited
9: visited := visited ∪ todo

10: return visited

In this new version of the algorithm, the computation of the successors in line 7 is still the bottleneck:

L := L ∪ project({(x, y) ∈ R | x ∈ todo}, Ir, Iw)

An important observation is that the same result can be obtained by applying the projected relation to the
projected arguments:

L := L ∪ {(x, y) ∈ project(R, Ir, Iw) | x ∈ project(todo, Ir)}

For our applications, the set project(todo, Ir ∪ Iw)} is typically much smaller than todo, which means that a
lot of duplicate successor computations in line 7 are avoided.

7

4.4 Reachability of a union of sparse relations

We now consider a relation R that is the union of a number of sparse relations. Examples of these sparse
relations are the summands of an LPS or of a PBES in SRF format.

R =

n⋃
i=1

Ri

Algorithm 4 Reachability of a union of sparse relations

1: function ReachableStates({R1, . . . , Rn}, x)
2: visited := {x}
3: todo := {x}
4: for 1 ≤ i ≤ n do
5: Li := ∅
6: Ir,i, Iw,i := read parameters(Ri),write parameters(Ri)

7: while todo ̸= ∅ do
8: for 1 ≤ i ≤ n do
9: Li := Li ∪ {(x, y) ∈ project(Ri, Ir,i, Iw,i) | x ∈ project(todo, Ir,i) \ domain(Li)}

10: todo :=

(
n⋃

i=1

relprod(Li, todo, Ir, Iw)

)
\ visited

11: visited := visited ∪ todo
12: return visited

Note that in line 9 another optimization has been applied, by excluding elements in the projected todo list
that are already in the domain of Li. For all values in domain(Li) the outgoing transitions have already been
determined. We can also replace domain(Li) by a set X that keeps track of all values of x that have already
been processed. Let X be initially the empty set and updated to X ← X ∪{x ∈ project(todo, Ir,i)} at line 9.
The set X contains all elements in domain(Li) but also all x with no outgoing transitions. In practice, the
transitions of Ri are computed on-the-fly and this additional caching can avoid these computations with the
downside that it requires more memory.

8

4.5 Reachability with chaining

For symbolic reachability it can be useful to reduce the amount of breadth-first search iterations because
this also reduces the amount of symbolic operations that have to be applied. Updating the todo set after
applying each sparse relation can potentially increase the amount of states that are visited and thus reduce
the amount of breadth-first search iterations necessary. Note that we only add the states for which all sparse
relations have been applied to visited.

Algorithm 5 Reachability of a union of sparse relations

1: function ReachableStates({R1, . . . , Rn}, x)
2: visited := {x}
3: todo := {x}
4: for 1 ≤ i ≤ n do
5: Li := ∅
6: Ir,i, Iw,i := read parameters(Ri),write parameters(Ri)

7: while todo ̸= ∅ do
8: todo1 := todo
9: for 1 ≤ i ≤ n do

10: Li := Li ∪ {(x, y) ∈ project(Ri, Ir,i, Iw,i) | x ∈ project(todo1, Ir,i) \ domain(Li)}
11: todo1 := todo1 ∪ relprod(Li, todo1, Ir, Iw)

12: visited := visited ∪ todo
13: todo := todo1 \ visited
14: return visited

4.6 Reachability with deadlock detection

To detect deadlocks, i.e., states with no outgoing transitions, during reachability we have to determine which
states in the todo sets have no outgoing transitions after applying all the transitions groups. This can be
achieved as follows by considering the predecessors.

Algorithm 6 Reachability of a union of sparse relations

1: function ReachableStates({R1, . . . , Rn}, x)
2: visited := {x}
3: todo := {x}
4: deadlocks := ∅
5: for 1 ≤ i ≤ n do
6: Li := ∅
7: Ir,i, Iw,i := read parameters(Ri),write parameters(Ri)

8: while todo ̸= ∅ do
9: potential deadlocks := todo

10: for 1 ≤ i ≤ n do
11: Li := Li ∪ {(x, y) ∈ project(Ri, Ir,i, Iw,i) | x ∈ project(todo, Ir,i) \ domain(Li)}

12: todo :=

(
n⋃

i=1

relprod(Li, todo, Ir, Iw)

)
\ visited

13: potential deadlocks := potential deadlocks \
(

n⋃
i=1

relprev(Li, todo, Ir, Iw, potential deadlocks)

)
14: visited := visited ∪ todo
15: deadlocks := deadlocks ∪ potential deadlocks

16: return visited

9

For the chaining strategy we remove predecessors from the potential deadlocks at the end of every
transition group iteration (on line 11 of Algorithm 5) using todo1 instead of todo.

4.7 Joining relations

If two or more of the relations Ri have approximately the same set of read and write parameters, it can
be beneficial to join them into one relation. In [?] this is called combining transition groups. In order to
determine how well two relations match, we define a bit pattern for a relation that contains the read and
write information of the parameters.

Definition 17. The read write pattern of a relation R is defined as

read write pattern(R) = [r1, w1, . . . , rm, wm]

with
ri = read(R, i) and wi = write(R, i) (1 ≤ i ≤ m)

For two read write patterns p and q, we define p ∨ q as the bitwise or of both patterns. In other words,
if r = p ∨ q, then ri = pi ∨ qi (1 ≤ i ≤ 2m). Similarly we say that p ≤ q iff pi ≤ qi for 1 ≤ i ≤ 2m.

Example 18. Let S = N × N and let T and U be relations on the variables x, y. Let T be defined by
(x, y) → (x + 1, x) and let U be defined by x, y := x + 2, y. In this case x is a read independent parameter
in both T and U , but according to the definition x is not a read independent parameter of T ∪ U . Hence
read write pattern(T) = 1101, read write pattern(U) = 1100, and read write pattern(T ∪ U) = 1111.

4.7.1 Row subsumption

In [?] a notion called row subsumption is introduced for joining relations. This notion is based on an extension
to the theory, which ensures that the following property holds for two relations T and U :

read write pattern(T ∪ U) = read write pattern(T) ∨ read write pattern(U) (1)

It works as follows. Suppose we have a transition (x, y) ∈ T , and let L be the projected transition relation
corresponding to T ∪U . Then we insert the special value ▲ in L for all entries of y that correspond to a copy
parameter of T (i.e. with read write values 00). The meaning of this special value is that the corresponding
parameter will not be overwritten by L. The

This is achieved by using relprod▲ instead of relprod, which is defined as follows:

x[I = y]▲ = z with zr =

{
xr if r /∈ I or yr = ▲
yr otherwise

relprod▲(R̂, x, Ir, Iw, X) = {x[Iw = ŷ]▲ | project(x, Ir) = x̂ ∧ (x̂, ŷ) ∈ R̂}

N.B. In the Sylvan relprod function this functionality is implemented in a slightly different way, using a
concept called ’copy nodes’. It requires that the matrix L is assembled using the function union cube copy
instead of union cube.

4.8 An algorithm for partitioning a union of relations

In this section we sketch an approach for making a partition of a union of relations R =
⋃n

i=1 Ri that is based
on property 1. The goal is to create groups of relations Ri that have approximately the same read write
patterns. The main idea is that each group of the partition can be characterized by a read write pattern.

10

If we choose K read write patterns p1, . . . , pK such that

K∨
k=1

pk = read write pattern(R)

and
∀1 ≤ i ≤ n : ∃1 ≤ k ≤ K : read write pattern(Ri) ≤ pk

then we can define K groups by assigning relation Ri to group k if read write pattern(Ri) ≤ pk. Note that a
relation Ri can match multiple read write patterns pk, but in that case an arbitrary pattern may be chosen.

A heuristic for selecting suitable patterns pk is to choose them such that both∑
1≤k≤K

bitcount(pk)

and ∑
1≤k<l≤K

bitcount(pk ∧ pl)

are small. For example an SMT solver might be used to determine them.

11

5 Application: LPS Reachability

Consider the following untimed linear process specification P , with initial state d0.

P (d : D) =
∑
i∈I

∑
ei

ci(d, ei)→ ai(fi(d, ei)) · P (gi(d, ei))

Each summand i ∈ I defines a transition relation Ri characterized by
ei a sequence of summation variables
ci(d, ei) a condition
ai(fi(d, ei)) a transition label
gi(d, ei) the successor states

The set of states is D, which is naturally defined as a Cartesian product

D = D1 × . . .×Dm

In order to apply the reachability algorithm, we need the following ingredients:

{(x, y) ∈ Ri | x ∈ todo} enumerate solutions of condition
conversion between states and LDDs map values to integers
read parameters(Ri) syntactic analysis
write parameters(Ri) syntactic analysis
project(Ri, Ir,i, Iw,i) discard unused parameters
project(todo, Ir,i ∪ Iw,i) project (Sylvan function)
relprod(Li, todo, Ir, Iw) relprod (Sylvan function)

For a summand of the shape Ri = ci → ai(fi) · P (gi) we will now define the read and write dependencies.

read(Ri, j) = dj ∈ freevars(ci) ∨ ∃1 ≤ k ≤ m : (dj ∈ freevars(gi,k) ∧ (dk ̸= dj ∨ gi,j ̸= dj))

write(Ri, j) = (dj ̸= gi,j)

12

6 Application: PBES Reachability

Definition 19. A parameterised Boolean equation system (PBES) is a sequence of equations as defined by
the following grammar:

E ::= ∅ | (µX(d : D) = φ)E | (µX(d : D) = φ)E

where ∅ is the empty PBES, µ and ν denote the least and greatest fixpoint operator, respectively, and
X ∈ χ is a predicate variable of sort D → B. The right-hand side φ is a syntactically monotone predicate
formula. Lastly, d ∈ V is a parameter of sort D.

Definition 20. Let E be a PBES. Then E is in standard recursive form (SRF) iff for all σiXi(d : D) =
φ) ∈ E, where φ is either disjunctive or conjunctive, i.e., the equation for Xi has the shape

σiXi(d : D) =
∨
j∈Ji

∃ej : Ej .fij(d, ej) ∧Xgij (hij(d, ej))

or
σiXi(d : D) =

∧
j∈Ji

∀ej : Ej .fij(d, ej) =⇒ Xgij (hij(d, ej)),

where d = (d1, . . . , dm).

6.1 PBES Reachability

We will now define reachability for a PBES. The set of states is S = {Xi(d) | 1 ≤ i ≤ n ∧ d ∈ D}. Each
summand (i, j) with j ∈ Ji defines a transition relation Rij that is characterized by the parameters

σi a fixpoint symbol
ej a sequence of quantifier variables
(X = Xi) ∧ fij(d, ej) a condition
Xgij (hij(d, ej)) the successor states,

where X(d) is the current state.
In order to apply the reachability algorithm, we need the following ingredients (exactly the same as for

LPSs):

{(x, y) ∈ Ri | x ∈ todo} enumerate solutions of condition
conversion between states and LDDs map values to integers
read parameters(Ri) syntactic analysis
write parameters(Ri) syntactic analysis
project(Ri, Ir,i, Iw,i) discard unused parameters
project(todo, Ir,i ∪ Iw,i) project (Sylvan function)
relprod(Li, todo, Ir, Iw) relprod (Sylvan function)

6.2 Splitting Conditions

Symbolic reachability is most effective when the number of read/write parameters and the number of tran-
sitions per transition group are small. We can split the disjunctive conditions in a conjunctive equation as
follows: Consider a PBES E in SRF with an equation σiXi(d : D) ∈ E of the shape:

σiXi(d : D) =
∧
j∈Ji

∀ej : Ej .(
∨

k∈Kij

fijk(d, ej)) =⇒ Xgij (hij(d, ej))

σiXi(d : D) =
∧
j∈Ji

∀ej : Ej .
∧

k∈Kij

fijk(d, ej) =⇒ Xgij (hij(d, ej))

σiXi(d : D) =
∧
j∈Ji

∧
k∈Kij

∀ej : Eij .fijk(d, ej) =⇒ Xgij (hij(d, ej))

13

This transformation is safe and allows us to consider every fijk(d, ej)) as its own transition group. A similar
transformation can be applied to conjunctions in a disjunctive equation.

We can apply another transformation to conjunctive conditions inside conjunctive equations. By intro-
ducing a new equation for every conjunctive clause fijk(d, ej)), for k ∈ Kj , we can remain in SRF by the
following transformation:

σiXi(d : D) =
∧
j∈Ji

∀ej : Ej .(
∧

k∈Kij

fijk(d, ej)) =⇒ Xgij (hij(d, ej))

σiXi(d : D) =
∧
j∈Ji

∀ej : Ej .
∨

k∈Kij

(¬fijk(d, ej) ∨Xgij (hij(d, ej)))

σiXi(d : D) =
∧
j∈Ji

∀ej : Ej .true =⇒ Yj(hij(d, ej), ej)

Where Yj is a fresh name and its equation defined as follows:

νYj(d : D, ej : Ej) = (
∨

k∈Kij

¬fijk(d, ej) ∧ Yj(d, ej)) ∨ (true ∧Xgij (d, ej))

Note that this transformations makes the variable ej visible in the state space. Furthermore, this parameter
is also quantified without a condition. In practice, this means that the latter transformation is probably
unwanted in the presence of quantifiers. Note that every j ∈ Ji can be transformed according to whether
the condition is conjunctive or disjunctive respectively, or not transformed at all. The cases for a disjunctive
or conjunctive condition within a disjunctive equation are completely dual.

We can also observe that in the equation for Yj there is always a dependency on Xgij (hij(d, ej)), whereas,
in the original equation this was guarded by (

∧
k∈Kj

fijk(d, ej)). Alternatively, we can also consider the

following equation for Yj such that Xgij (hij(d, ej)) still has (weaker) guards.

νYj(d : D, ej : Ej) =
∨

k∈Kj

true ∧ Yjk(d, ej)

νYjk(d : D, ej : Ej) = fijk(d, ej) =⇒ Xgij (hij(d, ej))) for k ∈ Ki

14

7 Parity Game Solving

Let G = (V,E, r, (V0, V1)) be a parity game where V0 and V1 are disjoint sets of vertices in V owned by 0
(even) and 1 (odd) respectively. Furthermore, E ⊆ V × V is the edge relation, and we denote elements of
it by v → u iff (v, u) ∈ E. Finally, r(v) is the priority function assigning a priority to every vertex v ∈ V .
For a non-empty set U ⊆ V and a player α, the control predecessor of set U contains the vertices for which
player α can force entering U in one step. Let pre(U, V) = {u ∈ U | ∃v ∈ V : u → v} then it is defined as
follows:

cpreα(G,U) = (Vα ∩ pre(G,U)) ∪ (V1−α \ pre(G,V \ U))

The α-attractor into U , denoted Attrα(U, V), is the set of vertices for which player α can force any play
into U . We define Attrα(U, V) as

⋃
i≥0

Attriα(U, V), the limit of approximations of the sets Attrnα(U, V), which

are inductively defined as follows:

Attr0α(G,U) = U
Attrn+1

α (G,U) = Attrnα(G,U)
∪ cpreα(G,Attrnα(G,U))

We reformulate this into

Attr0α(G,U) = U
Attrn+1

α (G,U) = Attrnα(G,U)
∪ (Vα ∩ pre(V,Attrnα(G,U)))
∪ (V1−α ∩ (V \ pre(V, V \Attrnα(G,U)))

This can be further optimised by avoiding two intersections and only computing predecessors within
V1−α. Furthermore, for a union of sparse relations →=

⋃n
i=1 →i we can also apply the transition relations

→i directly instead of determining → first. For predi(U, V) = {u ∈ U | ∃v ∈ V : u→i v} we define:

Attr0α(G,U) = U
Attrn+1

α (G,U) = Attrnα(G,U)
∪

⋃n
i=1 prei(Vα,Attr

n
α(G,U))

∪ (V1−α \
⋃n

i=1 prei(V1−α, V \Attrnα(G,U))

First of all, we implement a variant of cpreα(G,U) that uses the union of sparse relations. The parameter
Zoutside can be used as an optimisation to reduce the amount of states considered, but can always be equal
to V . In the attractor set computation this will be equal to V \Attrnα(G,U)).

Algorithm 7 Control predecessor set computation for a union of sparse relations

1: function CPreα(G = (V,E, r, (V0, V1), U, Zoutside)
2: P := pre(G,U)
3: Pα := P ∩ Vα

4: Pforced := P ∩ V1−α

5: for 1 ≤ i ≤ n do
6: Pforced := Pforced \ prei(Pforced,Zoutside)

7: return Pα ∪ Pforced

For the actual implementation of the attractor set scheme we make two additional observations. Instead
of determining all predecessors for states in V \ Attrnα(U, V)) in the final step we only have to determine
predecessors that can actually reach V \ Attrnα(U, V)) in one step. Furthermore, we can actually keep track
of the states that have been added in the last iteration and were not yet part of the attractor set. We then
only have to compute predecessors with respect to this todo set.

15

Algorithm 8 Attractor set computation for a union of sparse relations

1: function Attrα(G = (V,E, r, (V0, V1), U)
2: todo := U
3: Z := U
4: Zoutside := V \X
5: while todo ̸= ∅ do
6: todo := CPreα(G,Z,Zoutside)
7: Z := Z ∪ todo
8: Zoutside := Zoutside \ todo
9: return Z

7.1 Zielonka

The standard Zielonka solving algorithm, defined in Algorithm 10 requires that every vertex has an outgoing
edge. If this is the case then the graph is called total. We can achieve this by extending every disjunctive
PBES equation with true ∧ Xfalse where Xfalse is defined as µXfalse = true ∧ Xfalse and similarly for the
conjunctive PBES equations with Xtrue. However, adding these unnecessary transitions can be costly.

Therefore, if we perform the deadlock detection we can avoid extending the PBES and obtain a total
graph by performing the preprocessing step described in Algorithm 9. Every disjunctive vertex that is a
deadlock is won by player odd (previously indicated by a transition to Xfalse) and every conjunctive vertex
that is a deadlock by player even. If we compute the attractors to these won vertices then the resulting
graph is total and can be used in the Zielonka algorithm as follows zielonka(preprocess(V,D, ∅, ∅)).

Algorithm 9 Preprocess the graph to be total and remove deadlocks D already solved vertices W0,W1

where W0 is won by even and W1 by odd.

1: function Preprocess(V,D,W0,W1)
2: W ′

0 ←W0 ∪ (D ∩ V1)
3: W ′

1 ←W1 ∪ (D ∩ V0)
4: W ′

0 ← Attr0(W
′
0, V)

5: W ′
1 ← Attr1(W

′
1, V)

6: return V \ (W ′
0 ∪W ′

1)

Algorithm 10 Zielonka

1: function Zielonka(V)
2: if V = ∅ then
3: return ∅, ∅
4: m := min({r(v) | v ∈ V })
5: α := m mod 2
6: U := {v ∈ V | r(v) = m}
7: A := Attrα(U, V)
8: W ′

0,W
′
1 := Zielonka(V \A)

9: if W ′
1−α = ∅ then

10: Wα,W1−α := A ∪W ′
α, ∅

11: else
12: B := Attr1−α(W

′
1−α, V)

13: W0,W1 := Zielonka(V \B)
14: W1−α := W1−α ∪B

15: return W0,W1

16

7.2 Partial Solving and Safe (Chaining) Attractors

We recall some of the definitions necessary for the purpose for partial solving (incomplete) parity games
that is introduced in [?], and provide pseudocode for these algorithms as well. First of all, we introduce the
notion of an incomplete parity game ⅁ = (G, I), where I ⊆ V is a set of incomplete vertices.

spreα(G,U) = (Vα ∩ pre(G,U)) ∪ (V1−α \ (pre(G,V \ U) ∪ I))

Secondly, we extend our attractor set computation to allow chaining through the predecessors. For this
purpose we introduce a chaining predecessor function chained pre(G,U,W) that has a parameter W which
defines the set of vertices where chaining is allowed. A function is a chaining predecessor iff it returns a set
P = chained pre(G,U,W) such that pre(G,U) ⊆ P and P ⊆ {u ∈ U | ∃v ∈ V : u→∗

W v} such that u→∗
W v

iff there is a sequence of vertices s→ u0 → u1 → . . .→v for which u0, u1, . . . ∈W .

Algorithm 11 Safe control predecessor set computation for a union of sparse relations

1: function SPreα(G = (V,E, r, (V0, V1), U, Zoutside, I,W)
2: P := chained pre(G,U, Vα ∩W)
3: Pα := P ∩ Vα

4: Pforced := (P ∩ V1−α) \ I
5: for 1 ≤ i ≤ n do
6: Pforced := Pforced \ prei(Pforced,Zoutside)

7: return Pα ∪ Pforced

7.2.1 Winning Cycle Detection

First, we implement cycle detection for a set of vertices V by determining the largest subset U of V such
that every vertex in U has a predecessor in U , as presented in Algorithm 12. If U satisfies this condition
then every vertex in U is part of a cycle.

Algorithm 12 Cycle detection

1: function detect-cycles(V)
2: U := ∅
3: U ′ := V
4: while U ̸= U ′ do
5: U := U ′

6: U ′ := U ∩ pred(U,U)

7: return U

If one of the players can force a play through a cycle of its own priority then these vertices (and all
vertices in a attractor to that set) are won by that player. Therefore, for every priority p let α = p mod 2
be a player and let P = {v ∈ Vα | r(v) = p} be a subset of vertices owned by player of parity p. Then the
set of vertices resulting from Attrα(detect-cycles(V), V) are won by player α.

17

8 LDD Operations

For an LDD A we use down(A) to denote A[xi = v] and right(A) to denote A[xi > v]. We use |A| to
denote the size of the LDD, determined by the number of nodes. Given a vector v = x0 x1 · · ·xn we define
its length, denoted by |v|, as n + 1. Note that an LDD can represent (some) sets where two vectors have
different lengths. For example the set {1 1, 0} can be represented by an LDD. However, the set {1 1, 1}
cannot be represented since the root node can either have true or node(1, true, false) as the down node and
true has no down or right nodes. In general, we cannot represent a set with vectors that are strict prefixes
(any vector x0 · · ·xm with m < n is a strict prefix of v) of other vectors in the set. In practice, this means
that we only consider LDDs where every vector in the represented set has the same length. We refer to this
length as the height of the LDD. We often require that the input LDDs have equal height since not every
output can be represented. For example the union of {1 1} and {1} cannot be represented as previously
shown.

8.1 Union

We define the union operator on two equal height LDDs A and B. This computes the union of the represented
sets of vectors.

Algorithm 13 Union of two equal height LDDs A and B

1: function union(A,B)
2: if A = B then
3: return a
4: else if A = false then
5: return b
6: else if B = false then
7: return a
8: if val(A) < val(B) then
9: return node(val(A), down(A),union(right(A), B))

10: else if val(A) = val(B) then
11: return node(val(A),union(down(A), down(B)),union(right(A), right(B)))
12: else if val(A) > val(B) then
13: return node(val(B), down(B),union(A, right(B)))

Lemma 21. For all LDDs A and B it holds that Junion(A,B)K = JAK ∪ JBK.

Proof. Pick arbitrary LDDs A and B. Proof by induction on the structure of A and B. For all LDDs
A′ and B′ we assume that Junion(A′, right(B′))K = JA′K ∪ Jright(B′)K and Junion(A′, down(B′))K =
JA′K ∪ Jdown(B′)K. Furthermore, Junion(right(A′), B′)K = Jright(A′)K ∪ JB′K and Junion(down(A′), B′)K =
Jdown(A′)K ∪ JB′K.

Base case. The LDD A is either true or false. Then B is either true or false due to the equal height
assumption. In both cases t he terminal conditions ensure correctness. For example Junion(true, false)K =
JtrueK and {[]} ∪ ∅ = {[]}. Similarly, for the case where B is either true or false.

Inductive step.

• Case val(A) < val(B). Since A is an LDD we know that val(A) < val(right(A)). Therefore, we
know that Jnode(val(A), down(A),union(right(A), B))K is equal to {val(A)x | x ∈ Jdown(A)K} ∪
Junion(right(A), B)K. It follows that Junion(right(A), B)K is equal to Jright(A)K ∪ JBK. From which
we can derive JAK ∪ JBK.

• Case val(A) = val(B). Since A is an LDD we know that val(A) < val(right(A)) and similarly be-
cause B is an LDD we know that val(A) < val(right(B)). Therefore, the following node is valid

18

and Jnode(val(A),union(down(A), down(B)),union(right(A), right(B)))K is equal to {val(A)x | x ∈
Junion(down(A), down(B))K}∪Junion(right(A), right(B))K. It follows that the interpretation {val(A)x |
x ∈ Junion(down(A), down(B))K is equal to {val(A)x | x ∈ Jdown(A)K}∪ {val(A)x | x ∈ Jdown(B)K}
and Junion(right(A), right(B))K is equal to J(right(A)K ∪ Jright(B))K.

• Case val(A) > val(B). Similar to the val(A) < val(B) case.

We can show that |union(A, B)| for any LDDs A and B is at most |A| + |B|. The time complexity of
union(A, B) is also of order O(|A|+ |B|).

8.2 Project

Given a vector x0 · · · xn and a subset I ⊆ N, we define the projection, denoted by project(x0 · · · xn, I), as
the vector xi0 , . . . , xil for the largest l ∈ N such that i0 < i1 < . . . < il ≤ n and ik ∈ I for 0 ≤ k ≤ l. We
define the projection operator for an LDD where every vector in the set is projected. For the LDD operator
it is more convenient to specify the indices I ⊆ N by a vector x0 · · · xn such that for 0 ≤ i ≤ n variable xi

is one iff i ∈ I. The operator takes an LDD A of height n and a sequence of numbers x0 x1, · · · xn.

Algorithm 14 Project vectors of an LDD A of height n using a sequence x0 · · · xn

1: function project(A, x0 x1 · · · xn)
2: if A = true then
3: return true
4: else if A = false then
5: return false
6: if x0 = 1 then
7: return node(val(A),project(down(A), x1 · · · xn),project(right(A), x0 · · · xn))
8: else if x0 = 0 then
9: a← A

10: R← false
11: while a ̸= false do
12: R← union(R,project(down(a), x1 · · · xn))
13: a← right(a)

14: return R

Lemma 22. For all LDDs A and sequences x0 x1 · · · xnit holds that Jproject(A, x0 · · · xn)K is equal to
{project(v, x0 · · · xn) ∈ JAK}.

Note that for a sequence of |A| zeroes project(A, 0 · · · 0) is equal to true and for a sequence of |A| ones
project(A, 1 · · · 1) is equal to A.

8.3 Caching

We can speed up LDD operations at the cost of memory by using an operation cache. For every operation
there will be a separate global cache, represented by a set, that stores a tuple of the inputs and the output.
We use global to emphasize that every recursion sees the latest values stored in the cache. For example
the union(A,B) operation has a cache Cunion and the pseudocode of union is changed such that after the
terminal cases first we check whether ∃R : (A,B,R) ∈ Cunion and return the result R if that is the case.
Otherwise, we perform the computation as before but store the result in Cunion instead before returning it.
Thus we obtain the following algorithm:

19

Algorithm 15 Union of two LDDs A and B. With a set Cunion as operation cache

1: function union(A,B,Cunion)
2: if A = B then
3: return a
4: else if A = false then
5: return b
6: else if B = false then
7: return a
8: if ∃R : (A,B,R) ∈ Cunion then return R

9: if val(A) < val(B) then
10: R← node(val(A), down(A),union(right(A), B,Cunion))
11: else if val(A) = val(B) then
12: R← node(val(A), union(down(A), down(B), union(right(A), right(B), Cunion))
13: else if val(A) > val(B) then
14: R← node(val(B), down(B),union(A, right(B), Cunion))

15: Cunion ← Cunion ∪ {(A,B,R)}
16: return R

8.4 Parallelism

In some cases we can improve the performance further by computing several results in parallel during the
operation. For example in the union of two LDDs A and B in the case val(A) = val(B) we could determine
the result of both unions in parallel and only merge them after they have finished.

20

