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1 Introduction

This document describes rewrite algorithms that can be applied in the mCRL2 tool set. Currently
only a prototype implementation in python is available. Most of the content is based on [?] and
on [?].

1.1 Higher order rewriting

There are several formalisms for higher order rewriting. We choose higher-order rewriting systems
(HRSs) introduced by Nipkow. In [?] HRSs are summarized as follows:

In a HRS we work modulo the βη-relation of simply typed λ-calculus. Types are built from
a non-empty set of base types and the binary type constructor → as usual. For every type we
assume a countably infinite set of variables of that type, written as x, y, z, . . .. A signature is
a non-empty set of typed function symbols. The set of preterms of type A over a signature Σ
consists exactly of the expressions sfor which we can derive s : A using the following rules:

1. x : A for a variable x of type A,

2. f : A for a function symbol f of type A in Σ,

3. if A = A′ → A′′, and x : A′ and s : A′′, then (x.s) : A,

4. if s : A′ → A and t : A′, then (s t) : A.

The abstraction operator . binds variables, so occurrences of x in s in the preterm x.s are
bound. We work modulo type-preserving α-conversion and assume that bound variables are re-
named whenever necessary in order to avoid unintended capturing of free variables. Parentheses
may be omitted according to the usual conventions. We make use of the usual notions of substitu-
tion of a preterm t for the free occurrences of a variable x in a preterm s, notation s[x := t], and
replacement in a context, notation C[t]. We write s ⊇ s′ if s′ is a subpreterm of s, and use ⊃ for
the strict subpreterm relation.

The β-reduction relation, notation →β , is the smallest relation on preterms that is compatible
with formation of preterms and that satisfies the following:

(x, s)t →β s[x := t]

The restricted η-expansion relation, notation →η, is defined as follows. We have

C[s] →η C[x.(s x)]

if s : A → B, and x : A is a fresh variable, and no β-redex is created (hence the terminology
restricted η-expansion). The latter condition is satisfied if s is not an abstraction (so not of the
form z.s′), and doesn’t occur in C[s] as the left part of an application (so doesn’t occur in a
sub-preterm of the form (s s′)).
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In the sequel we employ only preterms in η-normal form, where every sub-preterm has the
right number of arguments. Instead of s0s1 . . . sm we often write s0(s1, . . . , sm). A preterm is
then of the form x1 . . . xn.s0(s1, . . . , sm) with s0(s1, . . . , sm) of base type and all si in η-normal
form.

A term is a preterm in β-normal form. It is also in η-normal form because η-normal forms are
closed under β-reduction. A term is of the form x1 . . . xn.a(s1, . . . , sm) with a a function symbol or
a variable. Because the βη-reduction relation is confluent and terminating on the set of preterms,
every βη-equivalence class of preterms contains a unique term, which is taken as the representative
of that class.

Because in the discussion we will often use preterms, we use here the notation sσ for the
replacement of variables according to the substitution σ (without reduction to β-normal form),
and write explicitly sσ ↓βfor its β-normal form. This is in contrast with the usual notations for
HRSs.

A rewrite rule is a pair of terms (l, r), written as l → r, satisfying the following requirements:

1. l and r are of the same base type,

2. l is of the form f(l1, . . . , ln),

3. all free variables in r occur also in l,

4. a free variable x in l occurs in the form x(y1, . . . , yn) with yi η-equivalent to different bound
variables.

The last requirement guarantees that the rewrite relation is decidable because unification of
patterns is decidable. The rewrite rules induce a rewrite relation → on the set of terms which is
defined by the following rules:

1. if s → t then x(. . . , s, . . .) → x(. . . , t, . . .),

2. if s → t then f(. . . , s, . . .) → f(. . . , t, . . .),

3. if s → t then x.s → x.t,

4. if l → r is a rewrite rule and σ is a substitution then lσ ↓β→ rσ ↓β .

The last clause in this definition shows that HRSs use higher-order pattern matching, unlike
AFSs, where matching is syntactic.

1.2 mCRL2 terms

In mCRL2 we have the following terms:

t := x | f | t(t, · · · , t) | λx.t | ∀x.t | ∃x.t | t whr x = t′

where t is a term, x is a variable and f is a function symbol.

Remark 1 This needs to be further elaborated. Terms are typed, and function symbols (and
terms?) have an arity. The term t(t, · · · , t) is rather unusual, but it is covered by HRSs (?).

Remark 2 In fact the mCRL2 language uses slightly more general terms: λx1...xn
.t, ∀x1...xn

.t,
∃x1...xn

.t and t whr x1 = t1, . . . , xn = tn.

For a rewrite algorithm rewr the following rules are suggested:

rewr(λx.t, σ) = λx′ .rewr(t, σ[x := x′])

rewr(∀x.t, σ) = ∀x′ .rewr(t, σ[x := x′])

rewr(∃x.t, σ) = ∃x′ .rewr(t, σ[x := x′])

rewr(t whr x = t′, σ) = rewr(t, σ[x := t′])

where x′ is a fresh variable not appearing in t.
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Remark 3 In a rewrite algorithm, the term types are unused. One can add correctness checks
for proper typing however.

Remark 4 Types in mCRL2 need to be rewritten to normal form as well. A very simple rewrite
system can be defined for this.

Remark 5 What about normal forms for terms containing λ-expressions and/or quantifiers? Ex-
pressions can be equal modulo alpha-conversion, so the ATerm equality doesn’t work here.

Remark 6 In a rewrite algorithm one has to explicitly describe where α-conversion and β-reduction
is being done. Doing η-expansion is probably not necessary.

1.3 Types

A base type is a non-function type, typical examples are the Booleans or Natural numbers. Let B
be a non-empty set of base types and b ∈ B. The set of types is inductively defined as follows:

type ::= b | type× type | type → type,

where → is the function-type constructor. The type constructor associates to the left, for example:

b → b → b is the same as (b → b) → b.

Product types are often not present in treatment of simply-typed lambda calculus. We need them
later to type non-lambda terms.

The arity of a type A is a natural number, denoted arity(A), which is inductively defined on
the structure of A as follows:

arity(A) = 0 if A is a base type,
arity(A → A′) = arity(A′) + 1

A signature Σ is a non-empty set of function symbols each of which has a type. We write f : A
to denote that symbol f has type A and extend the notion arity to symbols such that if f : A
then arity(f) = arity(A). Symbols with arity zero are called constants.

Let Σ be a signature and let χA be a countably finite set of variables of type A such that
Σ ∩ χA = ∅, for each type A. The set of terms over Σ, denoted T (Σ), is inductively defined as

• Let x ∈ χA be a variable of type A then x ∈ T (Σ).

• Let f ∈ Σ be a function symbol of type A1× . . .×An → B, and ti : Ai for all i ∈ {1, . . . , n},
then f(t1, . . . , tn) ∈ T (Σ) is a term of type B.

• Let t : A1 × . . . × An → B, and ti : Ai for all i ∈ {1, . . . , n}, then t(t1, . . . , tn) ∈ T (Σ) is a
term of type B.

• Let x ∈ χA be a variable of type A and t a term of type B, then λx.(t) ∈ T (Σ) is a term of
type A → B.

1.4 Simple terms

Simple terms are terms with the following syntax:

t := x | f | f(t, · · · , t), (1)

where t is a term, x is a variable and f is a function symbol.
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1.5 Applicative terms

Applicative terms are an extension of simple terms:

t := x | f | t(t, · · · , t). (2)

The set of all variables is denoted by V, the set of all function symbols by F and the set of
all terms by T. In this document we use the convention that x, y ∈ V, that t, u ∈ T, and that
f, g ∈ F.

We write var(t) for the set of variables that occur in t. Formally:

var(x) = {x}
var(f) = ∅
var(t(t1, · · · , tn) = var(t) ∪

⋃
i=1···n

var(ti).

1.6 Subterms

To facilitate operations on subterms we inductively define positions (P) as follows. A position is
either ϵ (the empty position) or an index i (from 1,2,· · · ) combined with a position π, notation
i · π. We lift · to an associative operator on positions with ϵ as its unit element and often write
just i for the position i · ϵ. We write the subterm of t at position π as t|π and we write term t with
the subterm at position π replaced by u as t[u]π. These operations are defined as follows.

t|ϵ = t
t(t1, · · · , tn)|i·π = ti|π if 1 ≤ i ≤ n
t[u]ϵ = u
x[u]i·π = x
f(t1, · · · , tn)[u]i·π = f(t1, · · · , ti−1, ti[u]π, ti+1, · · · , tn) if i ≤ n
f(t1, · · · , tn)[u]i·π = f(t1, · · · , tn) if i > n

Some examples are:
f(x, g(y))|1 = x
f(x, g(y))|2·1 = y
f(x, g(y))[h(x)]2 = f(x, h(x))

1.7 Substitutions

A substitution is a function σ : V → T. A substitution σ can also be applied to a term t. This is
denoted by tσ and it is defined as

xσ = σ(x)
fσ = f
t(t1, · · · , tn)σ = tσ(t1σ, · · · , tnσ).

1.8 Rewrite rules

A rewrite rule is a rule l → r if c, with l, r, c ∈ T. We put three restrictions on rewrite rules:

1) l is a simple term
2) l /∈ V
3) var(r) ∪ var(c) ⊆ var(l)

For a set R of rewrite rules we define the rewrite relation →R as follows: t →R u if there is a
rule l → r if c in R , a position π and a substitution σ such that

t|π = lσ ∧ u = t[rσ]π ∧ η(cσ), (3)

where η is a boolean function that determines if a condition is true. We write → instead of →R

if no confusion can occur. We write →∗
R for the reflexive and transitive closure of →R and t ↛R

if there is no u such that t →R u. A normal form is a term u such that t →∗
R u and u ↛R.
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1.9 Rewrite algorithm

We now fomulate an abstract rewrite algorithm rewrite, where we assume that R is a given, fixed
set of rewrite rules.

function rewrite(t)
u := t
while {v | u →R v} ≠ ∅ do

choose v such that u →R v
u := v

return u

Note that this algorithm does not need to terminate. In practice we are also interested in an
algorithm rewrite(t, σ), that applies a substitution σ to the variables in t during rewriting. The
specification of this algorithm is simply

rewrite(t, σ) = rewrite(tσ).

The reason we are interested in such an algorithm is that it can be implemented more efficiently
than the straightforward solution to first compute u = tσ and then compute rewrite(u).

2 Match trees

A match tree is a tree structure that represents a number of rewrite rules that have left hand sides
with the same function symbol as head. It is used to compute all possible results of applying one
of these rules to a term. Currently match trees are only defined for simple terms. A match tree
consists of nodes of the following types:

• F (f, T, U) : If the current term has the form f(t1, · · · , tn) replace the top of the stack by
t1 ▷ · · ·▷ tn and continue with T , otherwise continue with U .

• S(x, T ) : Assign the current term to variable x and continue with T .

• M(x, T, U) : If the current term is equal to x continue with T , otherwise continue with U .

• R(Q) : Return Q

• X : Return the empty set.

• N(n, T ) : Remove n elements from the stack and continue with T . We abbreviate N(1, T )
as N(T ).

• E(T,U) : If the stack is not empty continue with T , otherwise continue with U .

• C(t, T, U) : If t evaluates to true, continue with T , otherwise continue with U .

where f is a function symbol, x is a variable, t is a term, Q is a set of terms annotated with a
rewrite rule, and T and U are match tree nodes.
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2.1 Evaluating a match tree

Let l be a sequence of terms, and let σ be an arbitrary substitution function. Then the evaluation
of a match tree with arguments l and σ is a set of terms and is defined as follows:

F (f, T, U)(l, σ) =


∅ if l = []
T (m,σ) if l = f ▷m
T (t1 ▷ · · ·▷ tn ▷m,σ) if l = f(t1, · · · , tn)▷m
U(l, σ) if l = g(t1, · · · , tn)▷m ∧ f ̸= g
U(l, σ) if l = x▷m

X(l, σ) = ∅

R(Q)(l, σ) =

{
{σ(t) | tα ∈ Q} if l = []
∅ if l ̸= []

S(x, T ) =

{
∅ if l = []
T (l, σ[x → t]) if l = t▷m

M(x, T, U)(l, σ) =

 ∅ if l = []
T (l, σ) if l = t▷m ∧ σ(x) = t
U(l, σ) if l = t▷m ∧ σ(x) ̸= t

N(n, T )(l, σ) =

{
∅ if |l| < n
T (m,σ) if l = t1 ▷ · · ·▷ tn ▷m

E(T,U)(l, σ) =

{
U(l, σ) if l = []
T (l, σ) if l = t▷m

C(t, T, U)(l, σ) =

{
T (l, σ) if tσ evaluates to true
U(l, σ) if tσ does not evalute to true

where T and U are match trees, f and g are function symbols, l and m are sequences of terms
and t and ti are terms. The evaluation of a match tree T in a single term t with substitution σ is
defined as T ([t], σ).

2.2 Building a match tree

Let α be a rewrite rule given by l → r.Then we define the match treematch tree(α) = γ([l], {rα}, ∅),
where γ is defined as:

γ([], Q, V ) = R(Q)

γ(x▷ s,Q, V ) =

{
S(x,N(γ(s,Q, V ∪ {x}))) if x /∈ V
M(x,N(γ(s,Q, V ∪ {x})), X) if x ∈ V

γ(f(t1, · · · , tn)▷ s,Q, V ) = F (f, γ(t1 ▷ · · ·▷ tn ▷ s,Q, V ), X)

Match trees are only defined for rewrite rules with simple terms at the left hand side.
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2.3 Joining match trees

Two match trees left and right can be joined into one using the operator ||, which is defined as
follows: left || right =

right if head(left) = X
left if head(right) = X
E(left, right) if head(right) = R
E(right, left) if head(left) = R
R(Q ∪Q′) if left = R(Q) and right = R(Q′)
S(x, T || right) if left = S(x, T ) and head(right) ∈ {F, S, U}
M(y, left || U, left) if left = S(x, T ) and right = M(y, U, V )
M(x, T || right, T ′ || right) if left = M(x, T, T ′) and head(right) ∈ {F,M,N, S}
S(x, left || U) if left = F (f, T, T ′) and right = S(x, U)
M(x, left || U, left) if left = F (f, T, T ′) and right = M(x, U, U ′)
F (f, T || U, T ′) if left = F (f, T, T ′) and right = F (f, U, U ′)
F (f, T, T ′ || right) if left = F (f, T, T ′) and right = F (g, U, U ′), f ̸= g
F (f, T || N(ar(f), U), T ′ || right) if left = F (f, T, T ′) and right = N(U)
S(x, left || U) if left = N(T ) and right = S(x, U)
M(x, left || U, left || U ′) if left = N(T ) and right = M(x, U, U ′)
F (f,N(ar(f), T ) || U, left) if left = N(T ) and right = F (f, U,X)
N(T || U) if left = N(T ) and right = N(U)
E(T, right || T ′) if left = E(T, T ′) and head(right) ∈ {F,M,N,R, S},

where head is defined as head(F (f, T, U)) = F , head(R(Q)) = R etc.
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2.4 Optimizing match trees

The result of joining match trees is often not optimal. This section gives two algorithms reduce
and clean to optimize match trees.

reduce(X) = X
reduce(F (f, T, U)) = reduceF (F (f, T, U), ∅)
reduce(S(x, T )) = reduceS(S(x, T ), ∅)
reduce(M(x, T, U)) = reduceM (M(x, T, U), ∅, ∅)
reduce(C(t, T, U)) = C(t, reduce(T ), reduce(U))
reduce(N(n, T )) = N(n, reduce(T ))
reduce(E(T,U)) = E(t, reduce(T ), reduce(U))
reduce(R(Q)) = R(Q)

reduceF (X,F ) = F
reduceF (F (f, T, U), F ) = reduceF (U,F ) if f ∈ F
reduceF (F (f, T, U)) = F (f, reduce(T ), reduceF (U,F ∪ {f})) if f /∈ F
reduceF (N(n, T )) = reduceM (M(x, T, U), ∅, ∅)

reduceS(X, ∅) = X
reduceS(X, {x} ∪ V ) = S(x, reduce(X[x/V ], ∅))
reduceS(F (f, T, U), ∅) = reduceF (F (f, T, U), ∅)
reduceS(F (F, T, U), {x} ∪ V ) = S(x, reduceF (F (f, T, U)[x/V ], ∅)
reduceS(S(x, T ), V ) = reduceS(T, V ∪ {x})
reduceS(N(n, T ), ∅) = reduce(N(n, T ), ∅)
reduceS(N(n, T ), {x} ∪ V ) = S(x, reduce(N(n, T )[x/V ]))

reduceM (X,Mt,Mf ) = reduce(X)
reduceM (F (f, T, U),Mt,Mf ) = reduceF (F (f, T, U), ∅)
reduceM (S(x, T ),Mt,Mf ) = reduceS(S(x, T ), ∅)
reduceM (M(x, T, U),Mt,Mf ) = reduceM (T,Mt,Mf ) if x ∈ Mt

reduceM (M(x, T, U),Mt,Mf ) = reduceM (U,Mt,Mf ) if x ∈ Mf

reduceM (M(x, T, U),Mt,Mf ) = M(x, reduceM (T,Mt ∪ {x},Mf ), if x /∈ Mt ∧ x /∈ Mf

reduceM (U,Mt ∪ {x},Mf ∪ {x}))
reduceM (N(n, T )) = reduce(N(n, T )),

with
X[x/V ] = X
F (f, T, U)[x/V ] = F (f, T [x/V ], U [x/V ])
S(x, T )[y/V ] = S(x, T [y/(V \ {x})])
M(x, T, U)[y/V ] = M(y, T [y/V ], U [y/V ]) if x ∈ V
M(x, T, U)[y/V ] = M(x, T [y/V ], U [y/V ]) if x /∈ V
C(t, T, U)[x/V ] = C(t[x/y : y ∈ V ], T [x/V ], U [x/V )
N(n, T )[x/V ] = N(n, T [x/V ])
E(T,U)[x/V ] = E(t, T [x/V ], U [x/V ])
R(Q)[x/V ] = R(Q[x/y : y ∈ V ])

clean(T ) = T ′ if χ(T ) = ⟨T ′, V ⟩ ,
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where χ is defined as

χ(X) = ⟨X, ∅⟩
χ(F (f, T, U)) = ⟨F (f, T ′, U ′), V ∪W ⟩ if χ(T ) = ⟨T ′, V ⟩ ∧ χ(U) = ⟨U ′,W ⟩
χ(S(x, T )) = ⟨S(x, T ′), V \ {x}⟩ if χ(T ) = ⟨T ′, V ⟩ ∧ x ∈ V
χ(S(x, T )) = ⟨T ′, V ⟩ if χ(T ) = ⟨T ′, V ⟩ ∧ x /∈ V
χ(M(x, T, U)) = ⟨T ′, V ⟩ if χ(T ) = ⟨T ′, V ⟩ ∧ χ(U) = ⟨U ′,W ⟩ ∧ T ′ = U ′

χ(M(x, T, U)) = ⟨M(x, T ′, U ′), V ∪W ∪ {x}⟩ if χ(T ) = ⟨T ′, V ⟩ ∧ χ(U) = ⟨U ′,W ⟩ ∧ T ′ ̸= U ′

χ(C(t, T, U)) = ⟨T ′, V ⟩ if χ(T ) = ⟨T ′, V ⟩ ∧ χ(U) = ⟨U ′,W ⟩ ∧ T ′ = U ′

χ(C(t, T, U)) = ⟨C(t, T ′, U ′), V ∪W ∪ var(t)⟩ if χ(T ) = ⟨T ′, V ⟩ ∧ χ(U) = ⟨U ′,W ⟩ ∧ T ′ ̸= U ′

χ(N(n, T )) = ⟨N(n, T ′), V ⟩ if ⟨T ′, V ⟩ = χ(T )
χ(E(T,U)) = ⟨T ′, V ⟩ if χ(T ) = ⟨T ′, V ⟩ ∧ χ(U) = ⟨X,W ⟩
χ(E(T,U)) = ⟨U ′,W ⟩ if χ(T ) = ⟨X,V ⟩ ∧ χ(U) = ⟨U ′,W ⟩
χ(E(T,U)) = ⟨E(T ′, U ′), V ∪W ⟩ if χ(T ) = ⟨T ′, V ⟩ ∧ χ(U) = ⟨U ′,W ⟩ ∧ T ′ ̸= X ∧ U ′ ̸= X
χ(R(Q)) = ⟨R(Q), var(Q)⟩

2.5 Prioritized rewrite rules

By adding priorities to rewrite rules, the selection of rewrite rules that is considered for a term
can be reduced. We model priorities of rewrite rules using a function φ, that returns the rules of
highest priority for a set of rules. So φ(R) ⊆ R and φ(R) = ∅ if and only if R = ∅. We define a
function prior that applies a priority function φ to a match tree:

prior(X,φ) = X
prior(F (f, T, U), φ) = F (f, prior(T, φ), prior(U,φ))
prior(S(x, T ), φ) = S(x, prior(T, φ))
prior(M(x, T, U), φ) = M(x, prior(T, φ), prior(U,φ))
prior(C(t, T, U), φ) = C(t, prior(T, φ), prior(U,φ))
prior(N(n, T ), φ) = N(n, prior(T, φ))
prior(R(Q), φ) = R(φ(Q))
prior(E(T,U), φ) = E(prior(T, φ), prior(U,φ)).

The effect of applying prior to a match tree is that the R-nodes will contain less elements. This
can be useful to remove unwanted results. Consider for example the rewrite system{

x = x → true
x = y → false

This system can have both true and false as a result of rewriting the term true = true. But if we
give the first equation a higher priority than the second, the undesired derivation true = true →
false is eliminated.

3 Rewriting

In this section we describe rewriting strategies. For the moment we only consider innermost
rewriting.

3.1 Rewriting using match trees

Suppose that we have a rewrite system, and that for each function symbol f a match tree Mf has
been constructed that corresponds to rewrite rules with head symbol f . We define the function
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rewrM as:

rewrM (x, σ) = σ(x)

rewrM (f, σ) =

{
f if Mf ([f ], σ) = ∅
u ∈ Mf ([f ], σ) if Mf ([f ], σ) ̸= ∅

rewrM (f(t1, · · · , tn), σ) =

{
f(t1, · · · , tn) if Mf ([f(t1, · · · , tn)], σ) = ∅
u ∈ Mf ([f(t1, · · · , tn)], σ) if Mf ([f(t1, · · · , tn)], σ) ̸= ∅

rewrM (x(t1, · · · , tn), σ) = x(t1, · · · , tn)
rewrM (u(u1, · · · , um)(t1, · · · , tn), σ) = u(u1, · · · , um)(t1, · · · , tn)

3.2 Innermost rewriting

We now define an algorithm rewrI for innermost rewriting. It is defined for applicative terms.
We assume that σ(x) is always in normal form already.

rewrI(x, σ) = σ(x)
rewrI(f, σ) = rewrM (f, σ)
rewrI(t(t1, · · · , tn), σ) = rewrM (rewrI(t, σ)(rewrI(t1, σ), · · · , rewrI(tn, σ)), σ)

4 Further work

• Extend the definition of terms with lambda expressions and quantifier expressions, and
extend the algorithms so they can handle them.

• Design an algorithm for rewriting using strategies as defined in [?].

• Extend the rewrite algorithms so they handle evaluation of conditions (as is required in the
evaluation of a C-node).

• Extend the rewrite algorithms for rewrite rules with more general left hand sides.

• Collect examples of higher order rewrite systems for testing the algorithms.
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