PBES Instantiation and Solving

Wieger Wesselink, Tim Willemse

April 26, 2024

This document describes instantiation and solving algorithms for PBESs that are used in the tools pbesinst and pbessolve.

1 Finite algorithm

In this section we describe an implementation of the finite instantiation algorithm PbesInstFinite that eliminates data parameters with finite sorts. It is implemented in the tool pbesinst. Let $\mathcal{E}=\left(\sigma_{1} X_{1}\left(d_{1}\right.\right.$: $\left.\left.D_{1}, e_{1}: E_{1}\right)=\varphi_{1}\right) \cdots\left(\sigma_{n} X_{n}\left(d_{n}: D_{n}, e_{n}: E_{n}\right)=\varphi_{n}\right)$ be a PBES. We assume that all data sorts D_{i} are finite and all data sorts E_{i} are infinite. Let r be a data rewriter, and let ρ be an injective function that creates a unique predicate variable from a predicate variable name and a data value according to $\rho\left(X(d: D, e: E), d_{0}\right) \rightarrow Y(e: E)$, where D is finite and E is infinite and $d_{0} \in D$. Note that D and D_{i} may be multi-dimensional sorts.

```
PbesInstFinite \((\mathcal{E}, r, \rho)\)
for \(i:=1 \cdots n\) do
    \(\mathcal{E}_{i}:=\left\{\sigma_{i} \rho\left(X_{i}, d\right)=R\left(\varphi_{k}\left[d_{k}:=d\right]\right) \mid d \in D_{i}\right\}\)
return \(\mathcal{E}_{1} \cdots \mathcal{E}_{n}\),
```

with R a rewriter on pbes expressions that is defined as follows:

$$
\begin{array}{rlr}
R(b) & =b \\
R(\neg \varphi) & =\neg R(\varphi) & \\
R(\varphi \oplus \psi) & =R(\varphi) \oplus R(\psi) & \\
R\left(X_{i}(d, e)\right) & =\left\{\begin{array}{cl}
\rho\left(X_{i}, r(d)\right)(r(e)) & \text { if } F V(d)=\emptyset \\
\bigvee_{d_{i} \in D_{i}} r\left(d=d_{i}\right) \wedge \rho\left(X_{i}, d_{i}\right)(r(e)) & \text { if } F V(d) \neq \emptyset
\end{array}\right. \\
R\left(\forall_{d: D} \cdot \varphi\right) & =\forall_{d: D} \cdot R(\varphi) \\
R\left(\exists_{d: D} \cdot \varphi\right) & =\exists_{d: D} \cdot R(\varphi) &
\end{array}
$$

where $\oplus \in\{\vee, \wedge, \Rightarrow\}, b$ a data expression and φ and ψ pbes expressions and $F V(d)$ is the set of free variables appearing in d.

2 Lazy algorithm

In this section we describe an implementation of the lazy instantiation algorithm PbesInstLazy that uses instantiation to compute a BES. It is implemented in the tool pbesinst. It takes two extra parameters, an injective function ρ that renames proposition variables to predicate variables, and a rewriter R that eliminates quantifiers from predicate formulae. Let $\mathcal{E}=\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\varphi_{1}\right) \ldots\left(\sigma_{n} X_{n}\left(d_{n}: D_{n}\right)=\varphi_{n}\right)$ be a PBES, and $X_{\text {init }}\left(e_{\text {init }}\right)$ an initial state.

```
\(\operatorname{PbesinstLazy}\left(\mathcal{E}, X_{i n i t}\left(e_{\text {init }}\right), R, \rho\right)\)
for \(i:=1 \cdots n\) do \(\mathcal{E}_{i}:=\epsilon\)
todo \(:=\left\{R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\right\}\)
done \(:=\emptyset\)
while todo \(\neq \emptyset\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    done \(:=\) done \(\cup\left\{X_{k}(e)\right\}\)
    \(X^{e}:=\rho\left(X_{k}(e)\right)\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\mathcal{E}_{k}:=\mathcal{E}_{k}\left(\sigma_{k} X^{e}=\rho\left(\psi^{e}\right)\right)\)
    todo \(:=\) todo \(\cup\left\{Y(f) \in \operatorname{occ}\left(\psi^{e}\right) \mid Y(f) \notin\right.\) done \(\}\)
return \(\mathcal{E}_{1} \cdots \mathcal{E}_{n}\),
```

where ρ is extended from predicate variables to quantifier free predicate formulae using

$$
\begin{aligned}
\rho(b) & =b \\
\rho(\varphi \oplus \psi) & =\rho(\varphi) \oplus \rho(\psi)
\end{aligned}
$$

3 Generic lazy algorithms

In this section two generic variants of lazy PBES instantiation are described that report all discovered BES equations using a callback function ReportEquation. These versions are later extended to compute structure graphs.

The first version PbesInstLazy1 maintains a collection done, that contains all BES variables for which an equation has been computed.

```
\(\operatorname{PbesInstLazy} 1\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
done \(:=\emptyset\)
while todo \(\neq \emptyset\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    done \(:=\) done \(\cup\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    REportEquation \(\left(X_{k}(e), \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) done \()\)
```

The second version PbesInstLazy2 maintains a set discovered instead of done. This set contains BES variables that have been discovered, but for which the corresponding equation may not have been computed yet. The sets are related via done $=$ discovered \backslash todo.

```
PbesInstLazy2 \(\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
while todo \(\neq \emptyset\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    ReportEquation \(\left(X_{k}(e), \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup \operatorname{occ}\left(\psi^{e}\right)\)
```

It turned out that the second version has slightly better performance for some larger use cases, so the second version is implemented in the tool pbessolve.

To support breadth first and depth first search, the implementation stores the set todo as a double ended queue. New elements are always appended to todo. In the case of breadth first search always the first element is chosen, and in the case of depth first search the last element.

4 Structure graphs

A structure graph is a tuple (V, E, d, r) with V a set of nodes containing BES variables, E a set of edges, $r: V \rightarrow \mathbb{N}$ a partial function that assigns a rank to each node, and $d: V \rightarrow\{\mathbf{\Delta}, \boldsymbol{\nabla}, \top, \perp\}$ a partial function that assigns a decoration to each node. A structure graph is formally defined using the following SOS rules:

$$
\begin{gathered}
\frac{X \in \operatorname{bnd}(\mathcal{E})}{r(X)=\operatorname{rank}_{\mathcal{E}}(X)} \\
\overline{d(\text { true })=\top} \quad \overline{d(\text { false })=\perp}
\end{gathered}
$$

$$
\begin{aligned}
& \overline{d\left(f \wedge f^{\prime}\right)=\boldsymbol{\Delta}} \quad \overline{d\left(f \vee f^{\prime}\right)=\boldsymbol{\nabla}} \\
& \frac{f \mathbf{\Delta} \quad f \rightarrow g}{\left(f \wedge f^{\prime}\right) \rightarrow g} \quad \frac{f \mathbf{\Delta} \quad f \rightarrow g}{\left(f^{\prime} \wedge f\right) \rightarrow g} \\
& \frac{f \vee f \rightarrow g}{\left(f \vee f^{\prime}\right) \rightarrow g} \quad \frac{f \vee f \rightarrow g}{\left(f^{\prime} \vee f\right) \rightarrow g} \\
& \frac{\neg f \boldsymbol{\Delta}}{f \wedge f^{\prime} \rightarrow f} \quad \frac{\neg f^{\prime} \boldsymbol{\Delta}}{f \wedge f^{\prime} \rightarrow f^{\prime}} \\
& \frac{\neg f \nabla}{f \vee f^{\prime} \rightarrow f} \quad \frac{\neg f^{\prime} \boldsymbol{\nabla}}{f \vee f^{\prime} \rightarrow f^{\prime}} \\
& \overline{X \wedge f \rightarrow X} \quad \overline{f \wedge X \rightarrow X} \\
& \overline{X \vee f \rightarrow X} \quad \overline{f \vee X \rightarrow X} \\
& \frac{\sigma X=f \wedge f^{\prime} \in \mathcal{E}}{d(X)=\mathbf{\Delta}} \quad \frac{\sigma X=f \vee f^{\prime} \in \mathcal{E}}{d(X)=\mathbf{\nabla}} \\
& \frac{\sigma X=Y \in \mathcal{E}}{X \rightarrow Y} \quad \frac{\sigma X=\top \in \mathcal{E}}{X \rightarrow \top} \quad \frac{\sigma X=\perp \in \mathcal{E}}{X \rightarrow \perp} \\
& \frac{\sigma X=f \wedge f^{\prime} \in \mathcal{E} \quad f \wedge f^{\prime} \rightarrow g}{X \rightarrow g} \\
& \frac{\sigma X=f \vee f^{\prime} \in \mathcal{E} \quad f \vee f^{\prime} \rightarrow g}{X \rightarrow g}
\end{aligned}
$$

Note that in this definition separate nodes are created for the left hand side X and the right hand side f of each equation $\sigma X=f$. This is undesirable, hence in implementations usually the nodes X and f are merged into one node labeled with X.

4.1 Attractor sets

Let $A \subseteq V$ be a subset of vertices of a structure graph $G=(V, E, d, r)$. We define the following algorithms for computing an attractor set of A. The value $\alpha=0$ corresponds with disjunction and $\alpha=1$ with conjunction.

```
\(\operatorname{AttrDefault}(A, \alpha)\)
todo \(:=\bigcup_{u \in A}(\operatorname{pred}(u) \backslash A)\)
while todo \(\neq \emptyset\) do
    choose \(u \in\) todo
    todo \(:=\) todo \(\backslash\{u\}\)
    if \(d(u)=\alpha \vee \operatorname{succ}(u) \subseteq A\) then
        if \(d(u)=\alpha\) then \(\tau[u]:=v\) with \(v \in A \cap \operatorname{succ}(u)\)
        \(A:=A \cup\{u\}\)
        todo \(:=\) todo \(\cup(\operatorname{pred}(u) \backslash A)\)
return \(A\)
```

where

$$
\begin{aligned}
\operatorname{pred}(v) & =\{u \in V \mid(u, v) \in E\} \\
\operatorname{succ}(u) & =\{v \in V \mid(u, v) \in E\}
\end{aligned}
$$

As a side effect a mapping τ is produced that corresponds to a winning strategy. Assignments to τ are colored .

A second version AttrDefaultWithTau is available, that in addition sets the strategy in the mapping τ_{α}.

```
AttrDefaultWithTau \(\left(A, \alpha, \tau_{\alpha}\right)\)
todo \(:=\bigcup_{u \in A}(\operatorname{pred}(u) \backslash A)\)
while todo \(\neq \emptyset\) do
    choose \(u \in\) todo
    todo \(:=\) todo \(\backslash\{u\}\)
    if \(d(u)=\alpha \vee \operatorname{succ}(u) \subseteq A\) then
        if \(d(u)=\alpha\) then \(\tau[u], \tau_{\alpha}[u]:=v, v\) with \(v \in A \cap \operatorname{succ}(u)\)
        \(A:=A \cup\{u\}\)
        todo \(:=\) todo \(\cup(\operatorname{pred}(u) \backslash A)\)
return \(A, \tau_{\alpha}\)
```

Finally AttrDefaultNoStrategy does not set any strategy:

$$
\begin{aligned}
& \text { AttrDefaulNoStrategy }(A, \alpha) \\
& \text { todo }:=\bigcup_{u \in A}(\operatorname{pred}(u) \backslash A) \\
& \text { while todo } \neq \emptyset \text { do } \\
& \quad \text { choose } u \in \text { todo } \\
& \quad \text { todo }:=\text { todo } \backslash\{u\} \\
& \text { if } d(u)=\alpha \vee \operatorname{succ}(u) \subseteq A \text { then } \\
& \quad A:=A \cup\{u\} \\
& \quad \text { todo }:=\text { todo } \cup(\operatorname{pred}(u) \backslash A) \\
& \text { return } A
\end{aligned}
$$

A second version of an attractor set computation is ATTRSIMPLE. It is used for pruning the todo list.

```
AttrSimple \((A)\)
todo \(:=\bigcup_{u \in A}(\operatorname{pred}(u) \backslash A)\)
while todo \(\neq \emptyset\) do
    choose \(u \in\) todo
    todo \(:=\) todo \(\backslash\{u\}\)
    if \(\operatorname{succ}(u) \subseteq A\) then
        \(A:=\bar{A} \cup\{u\}\)
        if \(d(u)=\alpha\) then \(\tau[u]:=v\) with \(v \in A \cap \operatorname{succ}(u)\)
        todo \(:=\) todo \(\cup(\operatorname{pred}(u) \backslash A)\)
return \(A\)
```


4.2 Recursive procedure for solving structure graphs

Let $G=(V, E, d, r)$ be a structure graph. The following algorithm is used to compute a partitioning of V into $\left(W_{0}, W_{1}\right)$ of vertices W_{0} that represent equations evaluating to true and vertices W_{1} that represent equations evaluating to false. A precondition of this algorithm is that it contains no nodes with decoration
\top or \perp. This algorithm is based on Zielonka's recursive algorithm.

```
SolveRecursive ( \(V\) )
if \(V=\emptyset\) then return \((\emptyset, \emptyset)\)
\(m:=\min (\{r(v) \mid v \in V\})\)
\(\alpha:=m \bmod 2\)
\(U:=\{v \in V \mid r(v)=m\}\)
\(A:=\) AttrDefault \((U, \alpha)\)
\(W_{0}^{\prime}, W_{1}^{\prime}:=\operatorname{SolveREcursive}(V \backslash A)\)
if \(W_{1-\alpha}^{\prime}=\emptyset\) then
    \(W_{\alpha}, W_{1-\alpha}:=A \cup W_{\alpha}^{\prime}, \emptyset\)
else
    \(B:=\) AttrDefault \(\left(W_{1-\alpha}^{\prime}, 1-\alpha\right)\)
    \(W_{0}, W_{1}:=\operatorname{SolveRECURSIVE}(V \backslash B)\)
    \(W_{1-\alpha}:=W_{1-\alpha} \cup B\)
return \(W_{0}, W_{1}\)
```

where

$$
\operatorname{succ}(u, U)= \begin{cases}\operatorname{succ}(u) \cap U & \text { if } \operatorname{succ}(u) \cap U \neq \emptyset \\ \operatorname{succ}(u) & \text { otherwise }\end{cases}
$$

Tom van Dijk has introduced an optimization that may reduce the number of recursive calls. Note that this optimized version does not compute a complete strategy, so it cannot be used for counter example generation(!)

```
SolveRecursive ( \(V\) )
precondition \(: V \subseteq \operatorname{dom}(r) \cup \operatorname{dom}(d)\)
if \(V=\emptyset\) then return \((\emptyset, \emptyset)\)
\(m:=\min (\{r(v) \mid v \in V\})\)
\(\alpha:=m \bmod 2\)
\(U:=\{v \in V \mid r(v)=m\}\)
for \(u \in U\) if \(d(u)=\alpha \wedge \operatorname{succ}(u) \neq \emptyset\) then \(\tau[u]:=v\) with \(v \in \operatorname{succ}(u)\)
\(A:=\) AttrDefault \((U, \alpha)\)
\(W_{0}^{\prime}, W_{1}^{\prime}:=\operatorname{SolveRECURSIVE}(V \backslash A)\)
\(B:=\operatorname{AttrDefault}\left(W_{1-\alpha}^{\prime}, 1-\alpha\right)\)
if \(W_{1-\alpha}^{\prime}=B\) then
    \(W_{\alpha}, W_{1-\alpha}:=A \cup W_{\alpha}^{\prime}, B\)
else
    \(W_{0}, W_{1}:=\operatorname{SolveREcursive}(V \backslash B)\)
    \(W_{1-\alpha}:=W_{1-\alpha} \cup B\)
return \(W_{0}, W_{1}\)
```

The algorithm can be extended to sets V containing nodes with decoration \top or \perp as follows:

$$
\begin{aligned}
& \operatorname{SolveRECURSIVEExTENDED}(V) \\
& V_{1}:=\operatorname{AtTrDEFAULT}(\{v \in V \mid d(v)=\perp\}, 1) \\
& V_{0}:=\operatorname{AtTrDEFAULT}(\{v \in V \mid d(v)=\top\}, 0) \\
& \left(W_{0}, W_{1}\right):=\operatorname{SolveRECURSIVE}\left(V \backslash\left(V_{0} \cup V_{1}\right)\right) \\
& \text { return }\left(W_{0} \cup V_{1}, W_{0} \cup V_{1}\right)
\end{aligned}
$$

Another possible optimization of the SolveRecursive algorithm is to insert the following shortcuts. This
doesn't seem to have much effect in practice, so currently it isn't enabled in the code.

```
SolveRecursive \((V)\)
if \(V=\emptyset\) then return \((\emptyset, \emptyset)\)
\(m:=\min (\{r(v) \mid v \in V\})\)
\(\alpha:=m \bmod 2\)
\(U:=\{v \in V \mid r(v)=m\}\)
    for \(u \in U\) if \(d(u)=\alpha \wedge \operatorname{succ}(u) \neq \emptyset\) then \(\tau[u]:=v\) with \(v \in \operatorname{succ}(u)\)
    if \(h=m \wedge \operatorname{even}(m)\) then return \((\emptyset, V)\)
    if \(h=m \wedge \operatorname{odd}(m)\) then return \((V, \emptyset)\)
\(A:=\operatorname{AttrDefault}(U, \alpha)\)
\(W_{0}^{\prime}, W_{1}^{\prime}:=\operatorname{SolveRECURSIVE}(V \backslash A)\)
if \(W_{1-\alpha}^{\prime}=\emptyset\) then
    \(W_{\alpha}, W_{1-\alpha}:=A \cup W_{\alpha}^{\prime}, \emptyset\)
else
    \(B:=\operatorname{AttrDefault}\left(W_{1-\alpha}^{\prime}, 1-\alpha\right)\)
    \(W_{0}, W_{1}:=\operatorname{SolveRECuRSIVE}(V \backslash B)\)
    \(W_{1-\alpha}:=W_{1-\alpha} \cup B\)
return \(W_{0}, W_{1}\)
```


5 Structure graph based PBES instantiation

In the tool pbessolve an extension called PbesinstStructureGraph of the PbesinstLazy2 algorithm is implemented that builds a structure graph from the reported equations. On top of it several optimizations to this algorithm are defined. For readability, we only present the full algorithms here, and highlight the changes with respect to previous versions. A graph G is represented as a tuple (V, E) with V the set of vertices and E the set of edges.

```
\(\operatorname{PbesInstStructureGraph}\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
while todo \(\neq \emptyset\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \((V, E):=(V, E) \cup S G^{0}\left(X_{k}(e), \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup \operatorname{occ}\left(\psi^{e}\right)\)
return \((V, E)\)
```

where $S G^{0}$ and $S G^{1}$ are defined as

ψ	$S G^{0}(\varphi, \psi)$
true	$(\{\varphi\}, \emptyset)$
false	$(\{\varphi\}, \emptyset)$
Y	$(\{\varphi, \psi\},\{(\varphi, \psi)\})$
$\psi_{1} \wedge \cdots \wedge \psi_{n}$	$\left(\left\{\varphi, \psi_{1}, \cdots, \psi_{n}\right\},\left\{\left(\varphi, \psi_{1}\right), \cdots,\left(\varphi, \psi_{n}\right)\right\}\right) \cup \bigcup_{i=1}^{n} S G^{1}\left(\psi_{i}\right)$
$\psi_{1} \vee \cdots \vee \psi_{n}$	$\left(\left\{\varphi, \psi_{1}, \cdots, \psi_{n}\right\},\left\{\left(\varphi, \psi_{1}\right), \cdots,\left(\varphi, \psi_{n}\right)\right\}\right) \cup \bigcup_{i=1}^{n} S G^{1}\left(\psi_{i}\right)$

ψ	$S G^{1}(\varphi)$
true	$(\{\psi\}, \emptyset)$
false	$(\{\psi\}, \emptyset)$
Y	$(\{\psi\}, \emptyset)$
$\psi_{1} \wedge \cdots \wedge \psi_{n}$	$\left(\left\{\psi, \psi_{1}, \cdots, \psi_{n}\right\},\left\{\left(\psi, \psi_{1}\right), \cdots,\left(\psi, \psi_{n}\right)\right\}\right) \cup \bigcup_{i=1}^{n} S G^{1}\left(\psi_{i}\right)$
$\psi_{1} \vee \cdots \vee \psi_{n}$	$\left(\left\{\psi, \psi_{1}, \cdots, \psi_{n}\right\},\left\{\left(\psi, \psi_{1}\right), \cdots,\left(\psi, \psi_{n}\right)\right\}\right) \cup \bigcup_{i=1}^{n} S G^{1}\left(\psi_{i}\right)$,

where we assume that in $\psi_{1} \wedge \cdots \wedge \psi_{n}$ none of the ψ_{i} is a conjunction, and in $\psi_{1} \vee \cdots \vee \psi_{n}$ none of the ψ_{i} is a disjunction. Note that both $S G^{0}(\varphi, \psi)$ and $S G^{1}(\varphi, \psi)$ are defined as a pair (V, E) of nodes and edges.

5.1 Optimisation 1

The lemma below indicates that one can simplify the BES equation that is being created without affecting the solution to the BES.

Lemma 1 The solution to all variables in a $\operatorname{BES} \mathcal{E}(\sigma X=f) \mathcal{E}^{\prime}$ is equivalent to the solution to those variables in the $\operatorname{BES} \mathcal{E}\left(\sigma X=f\left[X:=b_{\sigma}\right]\right) \mathcal{E}^{\prime}$, where $b_{\sigma}=$ true if $\sigma=\nu$ and $b_{\sigma}=$ false if $\sigma=\mu$.

Using this lemma, rather than creating a structure graph underlying the equation $\sigma X_{e}=\psi^{e}$, we can create a structure graph for $\sigma X_{e}=\psi^{e}\left[X^{e}:=b_{\sigma}\right]$. This can be done by adding the following assignment below the assignment $\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)$:

$$
\psi^{e}:=R\left(\psi^{e}\left[X^{e}:=b_{\sigma}\right]\right)
$$

This leads to the following adaptations in the code:

```
\(\operatorname{PbesinstStructureGraph}_{1}\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
while todo \(\neq \emptyset\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) true \(\left.]\right)\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup \operatorname{occ}\left(\psi^{e}\right)\)
return \((V, E)\),
```


5.2 Optimisation 2

Our second optimisation exploits the fact that some of the BES equations that are generated while exploring the PBES are already solved (possibly after using optimisation 1). We first introduce some additional notation. Let (V, E) be a (partial) structure graph underlying the PBES \mathcal{E}. By S_{0} we denote the set of vertices that represent equations with solution true, whereas S_{1} denotes the set of vertices representing equations with solution false. Along with these sets, we introduce strategies τ_{0} and τ_{1} that explain why a vertex belongs to S_{0} or S_{1}, respectively. Let π be a partial function that maps vertices to the propositional variables they represent (and only those vertices that represent propositional variables). For a set of vertices $S \subseteq V$, we define the substitution ρ_{i} as follows for all $s \in S \cap \operatorname{dom}(\pi): \rho_{i}(\pi(s))=$ true if $i=0$ and $\rho_{i}(\pi(s))=$ false if $i=1$. The union of two substitutions is again a substitution, provided that the domain of variables these substitutions range over are disjoint.

The lemma below indicates how one can utilise such information to simplify the BES equation that is being created, again without affecting the solution to the BES.

Lemma 2 The solution to all variables in a BES $\mathcal{F} \equiv \mathcal{E}(\sigma X=f) \mathcal{E}^{\prime}$ is equivalent to the solution to those variables in the $B E S \mathcal{F}^{\prime} \equiv \mathcal{E}\left(\sigma X=f\left(\rho_{0}\left(S_{0}\right) \cup \rho_{1}\left(S_{1}\right)\right)\right) \mathcal{E}^{\prime}$, where for all $S_{0} \cup S_{1} \subseteq\left\{v \in V \mid \forall \theta, \theta^{\prime}:[\mathcal{F}] \theta(\pi(v)=\right.$ $[\mathcal{F}] \theta(\pi(v)\}$, where $[\mathcal{F}] \theta$ denotes the solution to \mathcal{F} under environment θ.

Using this lemma, rather than creating a structure graph underlying the equation $\sigma X_{e}=\psi^{e}$, we can create a structure graph for $\sigma X_{e}=\psi^{e}\left(\rho_{0}\left(S_{0}\right) \cup \rho_{1}\left(S_{1}\right)\right)$, provided that S_{0} and S_{1} contain vertices that represent solved equations. This leads to the following adaptations in the code: we maintain two sets S_{0} and S_{1} for which we can (cheaply) establish that these correspond to solved equations, and we add an assignment below the assignment of optimisation 1.

```
\(\operatorname{PbesinstStructureGraph}_{2 a}\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
\(S_{0}:=\emptyset\)
\(S_{1}:=\emptyset\)
while todo \(\neq \emptyset\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) true \(\left.]\right)\)
    \(\psi^{e}:=R\left(\psi^{e}\left(\rho_{0}\left(S_{0}\right) \cup \rho_{1}\left(S_{1}\right)\right)\right)\)
    \(S_{0}:=S_{0} \cup\left\{X^{e} \mid \psi^{e} \equiv\right.\) true \(\}\)
    \(S_{1}:=S_{1} \cup\left\{X^{e} \mid \psi^{e} \equiv\right.\) false \(\}\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup\) occ \(\left(\psi^{e}\right)\)
return \((V, E)\),
```

Note that this version of the algorithm is not available in the tool pbessolve.
Note on computing winning strategies. Rewriting the propositional formula ψ^{e} using S_{0} and S_{1} may result in a loss of information, preventing us from constructing a winning strategy for both players. We can solve that by mimicking the attractor set computation in our rewriting; that is, we implement $R\left(\psi^{e}\left(\rho_{0}\left(S_{0}\right) \cup \rho_{1}\left(S_{1}\right)\right)\right.$) using a rewriter R^{+}which takes a formula (and implicitly takes sets S_{0} and S_{1} into account. This leads to the following bottom-up procedure in which $R^{+}(f)$ yields a tuple ($b, f^{\prime}, g_{0}, g_{1}$), where b is either a Boolean value, or the value \perp, and f^{\prime} is a propositional formula that is equivalent to f under the assumption that S_{0} and S_{1} are solved, but the formula f is not fully solved using that information. Propositional formula g_{0} (resp. g_{1}) is a conjunctive (resp. disjunctive) formulae, representing f in case b is true (resp. false); in case b is true, the conjunctive formula g_{0} can be used to construct a witness, as it contains exactly all dependencies on S_{0} that are needed to make formula f hold. Dually for formula g_{1}.

- Case $f \equiv$ true then $R^{+}(f)=(f, f$, true, false $)$;
- Case $f \equiv$ false then $R^{+}(f)=(f, f$, true, false $)$;
- Case $f \equiv X$; then $R^{+}(f)=($ true, X, X, false $)$ when $X \in S_{0}$, (false, X, true, $\left.X\right)$ when $X \in S_{1}$ and (\perp, X, true, false) otherwise;
- Case $f \equiv f_{1} \wedge f_{2}$, assuming that $R^{+}\left(f_{i}\right)=\left(b_{i}, f_{i}^{\prime}, g_{0}^{i}, g_{1}^{i}\right)$.

If $b_{1}=$ true and $b_{2}=$ true, then $R^{+}(f)=\left(\right.$ true, $\left.f_{1}^{\prime} \wedge f_{2}^{\prime}, g_{0}^{1} \wedge g_{0}^{2}, f a l s e\right)$.
If $b_{1}=$ false and $b_{2} \neq$ false, then $R^{+}(f)=\left(\right.$ false, f_{1}^{\prime}, true,$\left.g_{1}^{1}\right)$.
If $b_{1} \neq$ false and $b_{2}=$ false then $R^{+}(f)=\left(\right.$ false, f_{2}^{\prime}, true,$\left.g_{1}^{2}\right)$.
If $b_{1}=$ false and $b_{2}=$ false then $R^{+}(f)=\left(\right.$ false, f_{1}^{\prime}, true,$\left.g_{1}^{1}\right)$ when $\left|g_{1}^{1}\right|<\left|g_{1}^{2}\right|$ and $\left(f a l s e, f_{2}^{\prime}\right.$, true,$\left.g_{1}^{2}\right)$ otherwise.
If $b_{1}=\perp$ and $b_{2}=\perp$ then $R^{+}(f)=\left(\perp, f_{1}^{\prime} \wedge f_{2}^{\prime}\right.$, true, false $)$;

- Case $f \equiv f_{1} \vee f_{2}$, assuming that $R^{+}\left(f_{i}\right)=\left(b_{i}, f_{i}^{\prime}, g_{0}^{i}, g_{1}^{i}\right)$.

If $b_{1}=$ false and $b_{2}=$ false, then $R^{+}(f)=\left(\right.$ false, $f_{1}^{\prime} \vee f_{2}^{\prime}$, true, $\left.g_{1}^{1} \vee g_{1}^{2}\right)$.
If $b_{1}=$ true and $b_{2} \neq$ true, then $R^{+}(f)=\left(\right.$ true $, f_{1}^{\prime}, g_{0}^{1}$, false $)$.

If $b_{1} \neq$ true and $b_{2}=$ true then $R^{+}(f)=\left(\right.$ true, $f_{2}^{\prime}, g_{0}^{2}$, false $)$.
If $b_{1}=$ true and $b_{2}=$ true then $R^{+}(f)=\left(\right.$ true $, f_{1}^{\prime}, g_{0}^{1}$, false) when $\left|g_{0}^{1}\right|<\left|g_{0}^{2}\right|$ and (true, $f_{2}^{\prime}, g_{0}^{2}$, false $)$ otherwise.
If $b_{1}=\perp$ and $b_{2}=\perp$ then $R^{+}(f)=\left(\perp, f_{1}^{\prime} \vee f_{2}^{\prime}\right.$, true, false $)$.
The assignment $\psi^{e}:=R\left(\psi^{e}\left(\rho_{0}\left(S_{0}\right) \cup \rho_{1}\left(S_{1}\right)\right)\right)$ can be replaced by an assignment $\left(b, \psi^{e}, g_{0}, g_{1}\right):=R^{+}\left(\psi^{e}\right)$, and the extension to S_{0} and S_{1} can then be replaced by the following code:

$$
\begin{aligned}
& \text { if } b=\text { true then } S_{0}:=S_{0} \cup\left\{X^{e}\right\} \\
& \text { if } b=\text { false then } S_{1}:=S_{1} \cup\left\{X^{e}\right\}
\end{aligned}
$$

Note that R^{+}can probably also be implemented at the level of PBES expressions. This results in the following adapted version, which is the default in pbessolve.

```
\(\operatorname{PbesinstStructureGraph}_{2}\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
\(S_{0}:=\emptyset\)
\(S_{1}:=\emptyset\)
while todo \(\neq \emptyset\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) true \(\left.]\right)\)
    \(\left(b, \psi^{e}, g_{0}, g_{1}\right):=R^{+}\left(\psi^{e}\right)\)
    if \(b=\) true then
        \(S_{0}:=S_{0} \cup\left\{X^{e}\right\}\)
        \(\psi^{e}:=g_{0}\)
    if \(b=\) false then
        \(S_{1}:=S_{1} \cup\left\{X^{e}\right\}\)
        \(\psi^{e}:=g_{1}\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup \operatorname{occ}\left(\psi^{e}\right)\)
\(V:=\operatorname{ExtractMinimalStructureGraph}\left(V\right.\), init, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
return \((V, E)\)
```

As a post-processing of the graph constructed by instantiation, the following procedure is used. It returns a structure graph (V, E) in which information regarding local winning strategies has been exploited to minimise the structure graph, preserving relevant counterexample information. Note: the strategies τ_{0} and τ_{1} are assumed to be consistent with the sets S_{0} and S_{1} (i.e., be a closed, winning strategy for the vertices in those sets).

```
ExtractMinimalStructureGraph \(\left(V\right.\), init, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
todo \(:=\{\) init \(\}\)
done \(:=\emptyset\)
while todo \(\neq \emptyset\) do
    choose \(u \in\) todo
    todo \(:=\) todo \(\backslash\{u\}\)
    done \(:=\) done \(\cup\{u\}\)
    if \(\left(u \in S_{0} \wedge d(u)=\boldsymbol{\nabla}\right)\)
        \(v:=\tau_{0}(u)\)
        if \(v \notin\) done then
            todo \(:=\) todo \(\cup\{v\}\)
    else if \(\left(u \in S_{1} \wedge d(u)=\mathbf{\Delta}\right)\)
        \(v:=\tau_{1}(u)\)
        if \(v \notin\) done then
                todo \(:=\) todo \(\cup\{v\}\)
    else
        for \(v \in \operatorname{succ}(u)\) do
            if \(v \notin\) done then
                todo \(:=\) todo \(\cup\{v\}\)
    return done
```


5.3 Pruning the todo set

During the execution of the algorithm, the set todo may contain nodes that can be proven to be irrelevant, in the sense that the solution of the PBES can already be computed without exploring the irrelevant nodes. To this end we partition the set todo into the sets todo and irrelevant using the function PruneTodo. This function is applicable for optimisations 3 and higher. Note that elements from irrelevant may be moved back to todo when new elements are added to the todo set. The function PruneTodo should be called periodically, not every iteration.

```
PbesinstStructureGraphPruneTodo \(\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
irrelevant \(:=\emptyset\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
\(S_{0}:=\emptyset\)
\(S_{1}:=\emptyset\)
while \((\) todo \(\backslash\) irrelevant \() \neq \emptyset \wedge X_{\text {init }}\left(e_{\text {init }}\right) \notin S_{0} \cup S_{1}\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) true \(\left.]\right)\)
    \(\left(b, \psi^{e}\right):=R^{+}\left(\psi^{e}\right)\)
    if \(b=\) true then \(S_{0}:=S_{0} \cup\left\{X^{e}\right\}\)
    if \(b=\) false then \(S_{1}:=S_{1} \cup\left\{X^{e}\right\}\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash(\right.\) discovered \(\backslash\) irrelevant \(\left.)\right)\)
    discovered \(:=\) discovered \(\cup \operatorname{occ}\left(\psi^{e}\right)\)
    irrelevant := irrelevant \(\backslash \operatorname{occ}\left(\psi^{e}\right)\)
    irrelevant \(:=\) PRUNETODO(init, todo, irrelevant)
\(V:=\) ExtractMinimalStructureGraph \(\left(V\right.\), init, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
return \((V, E)\),
```

where PruneTodo is defined as

```
PruneTodo(init, todo, irrelevant)
todo \({ }^{\prime}:=\{\) init \(\}\)
done \({ }^{\prime}:=\{\) init \(\}\)
new_todo \(:=\emptyset\)
while todo \(\neq \emptyset\) do
    choose \(u \in\) todo \({ }^{\prime}\)
    todo \(o^{\prime}:=\) todo \(^{\prime} \backslash\{u\}\)
    done' \(:=\) done \(e^{\prime} \cup\{u\}\)
    if \(d(u)=\perp \wedge \operatorname{succ}(u)=\emptyset\) then
        new_todo \(:=\) new_todo \(\cup\{u\}\)
    else if \(u \notin S_{0} \cup S_{1}\) then
        todo \({ }^{\prime}:=\) todo \(^{\prime} \cup\left(\operatorname{succ}(u) \backslash\right.\) done \(\left.^{\prime}\right)\)
new_todo \(:=\) new_todo \(\cap(\) todo \(\cup\) irrelevant \()\)
new_irrelevant \(:=(\) todo \(\cup\) irrelevant \() \backslash\) new_todo
return new_todo, new_irrelevant
```


5.4 Optimisations 3 and higher

When the computation of $S G^{0}(\varphi, \psi, r)$ finishes and the subgraph represented by $S G^{0}$ is effectively solved (which is the case if it represents true or false), we can use these results to solve other variables by propagating the information in S_{0} and S_{1} to the structure graph constructed so far. The modification is minor, re-using the attractor set computation (and setting of a winning strategy) that is also part of Zielonka's recursive algorithm. More specifically, we can ensure that S_{0} and S_{1} are closed under the appropriate
attractor set computations. Furthermore, if the initial vertex belongs to either S_{0} or S_{1}, we can terminate the search. This leads to the following modified algorithm, that is used as a basis for all further optimisations:

```
PbesinstStructureGraphEarlyTermination \(\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
\(S_{0}, \tau_{0}:=\emptyset, \emptyset\)
\(S_{1}, \tau_{1}:=\emptyset, \emptyset\)
while todo \(\neq \emptyset \wedge X_{\text {init }}\left(e_{\text {init }}\right) \notin S_{0} \cup S_{1}\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) true \(\left.]\right)\)
    \(\left(b, \psi^{e}\right):=R^{+}\left(\psi^{e}\right)\)
    if \(b=\) true then \(S_{0}:=S_{0} \cup\left\{X^{e}\right\}\)
    if \(b=\) false then \(S_{1}:=S_{1} \cup\left\{X^{e}\right\}\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup \operatorname{occ}\left(\psi^{e}\right)\)
    \(S_{0}, S_{1}, \tau_{0}, \tau_{1}:=\) apply_attractor \(\left(S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\) (executed periodically)
\(V:=\operatorname{ExtractMinimalStructureGraph}\left(V\right.\), init, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
return \((V, E)\),
```

The optimizations 3 until 7 each use a different function for apply_attractor. Attractor computations are expensive operations, so in pbessolve the function apply_attractor is called only periodically.

5.5 Optimisation 3

```
\(\operatorname{PbesinstStructureGraph}_{3}\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
\(S_{0}:=\emptyset\)
\(S_{1}:=\emptyset\)
while todo \(\neq \emptyset \wedge X_{\text {init }}\left(e_{\text {init }}\right) \notin S_{0} \cup S_{1}\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) true \(\left.]\right)\)
    \(\left(b, \psi^{e}\right):=R^{+}\left(\psi^{e}\right)\)
    if \(b=\) true then \(S_{0}:=S_{0} \cup\left\{X^{e}\right\}\)
    if \(b=\) false then \(S_{1}:=S_{1} \cup\left\{X^{e}\right\}\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup \operatorname{occ}\left(\psi^{e}\right)\)
    \(S_{0}, \tau_{0}:=\operatorname{AttrDefaultWithTau}\left(S_{0}, 0, \tau_{0}\right)\) (executed periodically)
    \(S_{1}, \tau_{1}:=\operatorname{AttrDefaultWithTau}\left(S_{1}, 1, \tau_{1}\right)\) (executed periodically)
\(V:=\) ExtractMinimalStructureGraph \(\left(V\right.\), init \(\left., S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
return ( \(V, E\) ),
```

Further needless instantiation can be avoided by utilising the attractor strategies that are set when extending S_{0} and S_{1} by, once in a while, computing which vertices are still reachable from $X_{\text {init }}\left(e_{\text {init }}\right)$, ignoring edges emanating from a vertex that are not part of the strategy for that vertex (if the strategy is set). This reachability analysis may be combined with a cheap algorithm that detects whether the game can in fact already be solved (see e.g. optimisation 4).

Note on computing winning strategies. The winning strategy can be set by extending it using the attractor strategy that is computed while computing $\operatorname{Attr}_{0}\left(S_{0} \cup\left\{X^{e}\right\}\right)$ and $\operatorname{Attr}_{1}\left(S_{1} \cup\left\{X^{e}\right\}\right)$.

5.6 Optimisation 4

Several simple algorithms exist that can solve partial structure graphs. An example algorithm is, for instance, the algorithm that computes whether is an odd-rank dominated conjunctive loop or an even-rank dominated disjunctive loop. The pbes2bool optimisation, implemented at the level of the structure graph is as follows (it typically assumes that the set U contains all fully explored vertices, r is the rank function, dom (r) yields the set of vertices with a rank associated to them; the function parity $(p)=\boldsymbol{\Lambda}$ when p is odd, and $\mathbf{\nabla}$ otherwise).

```
\(\operatorname{FindLoop}(U, v, w, p\), visited)
if \(d(w) \in\{\top, \perp\}\) then return false
if \(w \in \operatorname{dom}(r)\) and \(r(w) \neq p\) then return false
if \(w \in\) keys(visited) then return \(\operatorname{visited}(w)\)
if \(w \in U\) then
        \(\operatorname{visited}(w):=\) false
    if \(d(w)=\perp \vee d(w)=p \bmod 2\) then
                for \(u \in \operatorname{succ}(w)\) do
                    if \(u=v \vee \operatorname{FindLoop}(U, v, u, p\), visited) then
                    if \(u=v\) then \(\tau(w):=v\) else \(\tau(w):=u\)
                \(\operatorname{visited}(w):=\) true
                return true
    else
        return false
return false
```

The routine $\operatorname{FindLoop}(U, v, w, r(v)$, visited) finds a $r(v)$-ranked (possibly tree-like) loop starting in v, within a set of vertices U. Note that in the above routine, parameter w represents the 'current' vertex, whereas v represents the vertex from which the search was initiated. Note that parameter p fulfils the role of the fixpoint $\operatorname{sign} \sigma$ in the original algorithm, parameter v fulfils the role of $X_{k}(e)$ and w fulfils the role of ϕ.

The procedure FindLoops can be called from within the main algorithm; it searches for loops in the structure graph currently constructed.

```
FindLoops(discovered, todo, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
done \(:=\) discovered \(\backslash\) todo
visited \(:=[]\)
\(b_{0}, b_{1}:=\) false, false
for \(u \in d o n e \cap \operatorname{dom}(r)\) do
    if \(u \notin \operatorname{keys}(\) visited) then \(\operatorname{visited}(u):=\) false
    \(b:=\operatorname{FindLoop}(d o n e, u, u, r(u)\), visited)
    \(\operatorname{visited}(u):=b\)
    if \(b\) then
        if \(r(u) \bmod 2=0\) then \(S_{0}, b_{0}:=S_{0} \cup\{u\}\), true
            else \(S_{1}, b_{1}:=S_{1} \cup\{u\}\), true
if \(b_{0}\) then \(S_{0}:=\operatorname{AttrDefault} W \operatorname{ithTau}\left(S_{0}, 0, \tau_{0}\right)\)
if \(b_{1}\) then \(S_{1}:=\) AttrDefaultWithTau \(\left(S_{1}, 1, \tau_{1}\right)\)
return \(S_{0}, S_{1}, \tau_{0}, \tau_{1}\)
```

The above optimisation can be integrated in the algorithm as follows.

```
\(\operatorname{PbesinstStructureGraph}_{4}\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
\(S_{0}:=\emptyset\)
\(S_{1}:=\emptyset\)
while todo \(\neq \emptyset \wedge X_{\text {init }}\left(e_{\text {init }}\right) \notin S_{0} \cup S_{1}\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\operatorname{true}\right]\right)\)
    \(\left(b, \psi^{e}\right):=R^{+}\left(\psi^{e}\right)\)
    if \(b=\) true then \(S_{0}:=S_{0} \cup\left\{X^{e}\right\}\)
    if \(b=\) false then \(S_{1}:=S_{1} \cup\left\{X^{e}\right\}\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup\) occ \(\left(\psi^{e}\right)\)
    \(S_{0}, S_{1}, \tau_{0}, \tau_{1}:=\) FindLoops(discovered, todo, \(S_{0}, S_{1}, \tau_{0}, \tau_{1}\) ) (executed periodically)
\(V:=\) ExtractMinimalStructureGraph \(\left(V\right.\), init, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
return \((V, E)\)
```

Note that in the call to FindLoops we would like to pass the argument done $=$ discovered \backslash todo. However this set is not available, and it is too expensive to compute. So we pass the larger set discovered, and we use discovered $\cap \operatorname{dom}(r)=$ discovered \backslash todo.

Alternative implementation Optimisation 4 Optimisation 4 searches for a dominion within the set of vertices with the same priority. That is, for rank j and associated player $\alpha=j \bmod 2$, one searches for the largest set of vertices $X_{j} \subseteq\{v \in V \mid r(u)=j \vee u \notin \operatorname{dom}(r)\}$ satisfying that player α has a winning strategy within X_{j}. That is, it is the largest fixed point of the following transformer (assuming S_{α} and $S_{1-\alpha}$ are attractor-maximal):

$$
\begin{aligned}
\mathcal{C}_{j}(X)=\left\{v \in V \backslash S_{1-\alpha} \mid\right. & (r(u)=j \vee u \notin \operatorname{dom}(r)) \wedge \\
& \left(d(v)=\nabla \wedge \alpha=0 \Rightarrow\left(\left(X \cup S_{\alpha}\right) \cap\{u \in V \mid v \rightarrow u\} \neq \emptyset\right)\right) \\
& \vee\left(d(v)=\nabla \wedge \alpha=1 \Rightarrow\left((u \in V \mid v \rightarrow u\} \subseteq X \cup S_{\alpha}\right)\right) \\
& \left(d(v)=\mathbf{\Delta} \wedge \alpha=1 \Rightarrow\left(\left(X \cup S_{\alpha}\right) \cap\{u \in V \mid v \rightarrow u\} \neq \emptyset\right)\right) \\
& \left.\vee\left(d(v)=\mathbf{\Delta} \wedge \alpha=0 \Rightarrow\left(\{u \in V \mid v \rightarrow u\} \subseteq X \cup S_{\alpha}\right)\right)\right\}
\end{aligned}
$$

A simple algorithm computing this is the following. It uses a modified attractor computation.

```
\(\operatorname{FindLoops}_{2}\left(V, S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
\(J:=\{j \mid \exists u \in V \cap \operatorname{dom}(r): r(u)=j\}\)
\(S_{0}, \tau_{0}:=\operatorname{AttrDefaultWithTau}\left(S_{0}, 0, \tau_{0}\right)\)
\(S_{1}, \tau_{1}:=\operatorname{AttrDefaultWithTau}\left(S_{1}, 1, \tau_{1}\right)\)
for \(j \in J\)
    \(\alpha:=j \bmod 2\)
    \(U_{j}:=\{u \in V \mid r(u)=j \wedge(\alpha=0 \Rightarrow d(u) \neq\) false \() \wedge(\alpha=1 \Rightarrow d(u) \neq\) true \()\} \backslash S_{1-\alpha}\)
    \(U:=U_{j} \cup S_{\alpha}\)
    \(X:=\operatorname{AttrEqRank}(U, \alpha, V, j)\)
    \(Y:=V \backslash \operatorname{AttrDefault}(V \backslash X, 1-\alpha)\)
    while \(X \neq Y\) do
        \(X:=\operatorname{AttrEqRank}(U \cap Y, \alpha, V, j)\)
        \(Y:=Y \backslash \operatorname{AttrDefault}(Y \backslash X, 1-\alpha)\)
    for \(v \in X \backslash S_{\alpha}\) do
        if \((\alpha=0 \wedge d(u)=\nabla) \vee(\alpha=1 \wedge d(u)=\Delta)\) then
            if \(v \in U_{j}\) then \(\tau_{\alpha}(v):=w\) with \(w \in \operatorname{succ}(v) \cap Y\)
            else \(\tau_{\alpha}(v):=\tau(v)\)
    \(S_{\alpha}:=S_{\alpha} \cup X\)
    \(S_{\alpha}, \tau_{\alpha}:=\operatorname{AttrDefaultWithTau}\left(S_{\alpha}, \alpha, \tau_{\alpha}\right)\)
return \(S_{0}, S_{1}, \tau_{0}, \tau_{1}\)
```

where AttrEqRank is a slightly modified version of the original attractor set computation AttrDefault, where only predecessors in U with a rank of j are considered:

```
\(\operatorname{AttrEqRank}(A, \alpha, U, j)\)
todo \(:=\bigcup_{u \in A}\left(\operatorname{pred}^{=j}(u, U) \backslash A\right)\)
while todo \(\neq \emptyset\) do
    choose \(u \in\) todo
    todo \(:=\) todo \(\backslash\{u\}\)
    if \(d(u)=\alpha \vee \operatorname{succ}(u) \subseteq A\)
        if \(d(u)=\alpha\) then \(\tau[u]:=v\) with \(v \in A \cap \operatorname{succ}(u)\)
        \(A:=A \cup\{u\}\)
        todo \(:=\) todo \(\cup\left(\operatorname{pred}^{=j}(u, U) \backslash A\right)\)
return \(A\)
```

where

$$
\operatorname{pred}^{=j}(u, U)=\{v \in U \mid(v, u) \in E \wedge(r(v)=j \vee(v \notin \operatorname{dom}(r) \wedge d(v) \in\{\mathbf{\Delta}, \mathbf{\nabla}\})\}
$$

The above optimisation can be integrated in the algorithm as follows.

```
\(\operatorname{PbesinstStructureGraph}_{4}\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
\(S_{0}:=\emptyset\)
\(S_{1}:=\emptyset\)
while todo \(\neq \emptyset \wedge X_{\text {init }}\left(e_{\text {init }}\right) \notin S_{0} \cup S_{1}\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) true \(\left.]\right)\)
    \(\left(b, \psi^{e}\right):=R^{+}\left(\psi^{e}\right)\)
    if \(b=\) true then \(S_{0}:=S_{0} \cup\left\{X^{e}\right\}\)
    if \(b=\) false then \(S_{1}:=S_{1} \cup\left\{X^{e}\right\}\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup\) occ \(\left(\psi^{e}\right)\)
    \(S_{0}, S_{1}, \tau_{0}, \tau_{1}:=\mathrm{FindLoops}_{2}\left(V, S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\) (executed periodically)
\(V:=\) ExtractMinimalStructureGraph \(\left(V\right.\), init, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
return \((V, E)\)
```


5.7 Optimisation 5

A generalisation of optimisation 4 utilises a so-called fatal attractor. Fatal attractors are based on the observation that those vertices with a dominant priority that are attracted into themselves are won by the player with the parity of this dominant priority. A simple algorithm exploiting this is the following. It uses a modified attractor computation.

```
FatalAttractors \(\left(V, S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
\(J:=\{j \mid \exists u \in V \cap \operatorname{dom}(r): r(u)=j\}\)
\(S_{0}, \tau_{0}:=\operatorname{AttrDefaultWithTau}\left(S_{0}, 0, \tau_{0}\right)\)
\(S_{1}, \tau_{1}:=\operatorname{AttrDefaultWithTau}\left(S_{1}, 1, \tau_{1}\right)\)
for \(j \in J\)
    \(\alpha:=j \bmod 2\)
    \(U_{j}:=\{u \in V \mid r(u)=j \wedge(\alpha=0 \Rightarrow d(u) \neq\) false \() \wedge(\alpha=1 \Rightarrow d(u) \neq\) true \()\} \backslash S_{1-\alpha}\)
    \(U:=U_{j} \cup S_{\alpha}\)
    \(X:=\) AttrMinRank \((U, \alpha, V, j)\)
    \(Y:=V \backslash \operatorname{AttrDefault}(V \backslash X, 1-\alpha)\)
    while \(X \neq Y\) do
        \(X:=\) AttrMinRank \((U \cap Y, \alpha, V, j)\)
        \(Y:=Y \backslash \operatorname{AttrDefault}(Y \backslash X, 1-\alpha)\)
    for \(v \in X \backslash S_{\alpha}\) do
        if \((\alpha=0 \wedge d(u)=\boldsymbol{\nabla}) \vee(\alpha=1 \wedge d(u)=\mathbf{\Delta})\) then
        if \(v \in U_{j}\) then \(\tau_{\alpha}(v):=w\) with \(w \in \operatorname{succ}(v) \cap Y\)
        else \(\tau_{\alpha}(v):=\tau(v)\)
    \(S_{\alpha}:=S_{\alpha} \cup X\)
    \(S_{\alpha}, \tau_{\alpha}:=\operatorname{AttrDefaultWithTau}\left(S_{\alpha}, \alpha, \tau_{\alpha}\right)\)
return \(S_{0}, S_{1}, \tau_{0}, \tau_{1}\)
```

where AttrMinRank is a slightly modified version of the original attractor set computation AttrDefault, where only predecessors in U with a rank of at least j are considered:

```
AttrMinRank \((A, \alpha, U, j)\)
todo \(:=\bigcup_{u \in A}\left(\operatorname{pred}^{\geq j}(u, U) \backslash A\right)\)
while todo \(\neq \emptyset\) do
    choose \(u \in\) todo
    todo \(:=\) todo \(\backslash\{u\}\)
    if \(d(u)=\alpha \vee \operatorname{succ}(u) \subseteq A\)
        if \(d(u)=\alpha\) then \(\tau[u]:=v\) with \(v \in A \cap \operatorname{succ}(u)\)
        \(A:=A \cup\{u\}\)
        todo \(:=\) todo \(\cup\left(\operatorname{pred}^{\geq j}(u, U) \backslash A\right)\)
return \(A\)
```

where

$$
\operatorname{pred}^{\geq j}(u, U)=\{v \in U \mid(v, u) \in E \wedge(r(v) \geq j \vee(v \notin \operatorname{dom}(r) \wedge d(v) \in\{\mathbf{\Delta}, \nabla\})\}
$$

The above optimisation can be integrated in the algorithm as follows.

```
\(\operatorname{PbesinstStructureGraph}_{5}\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
\(S_{0}:=\emptyset\)
\(S_{1}:=\emptyset\)
while todo \(\neq \emptyset \wedge X_{\text {init }}\left(e_{\text {init }}\right) \notin S_{0} \cup S_{1}\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) true \(\left.]\right)\)
    \(\left(b, \psi^{e}\right):=R^{+}\left(\psi^{e}\right)\)
    if \(b=\) true then \(S_{0}:=S_{0} \cup\left\{X^{e}\right\}\)
    if \(b=\) false then \(S_{1}:=S_{1} \cup\left\{X^{e}\right\}\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup\) occ \(\left(\psi^{e}\right)\)
    \(S_{0}, S_{1}, \tau_{0}, \tau_{1}:=\operatorname{FATALAtTRACtORS}\left(V, S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\) (executed periodically)
\(V:=\operatorname{ExtractMinimalStructureGraph}\left(V\right.\), init, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
return \((V, E)\)
```


5.8 Optimisation 6

Optimisation 6 is a slightly different fatal attractor computation that is very close to the original one by Michael Huth, Jim Huan-Pu Kuo, and Nir Piterman.

```
AttrMinRankOriginal( \(A, \alpha, U, j\) )
\(\{\) compute the \(\alpha\)-min attractor into the set \(A\), restricted to vertices in \(U\) \}
todo \(:=\bigcup_{u \in A}\left(\operatorname{pred}^{\geq j}(u, U)\right)\)
\(X:=\{u \in\) todo \(\cap A \mid d(u)=\alpha \vee \operatorname{succ}(u) \subseteq A\}\)
while todo \(\neq \emptyset\) do
    choose \(u \in\) todo
    todo \(:=\) todo \(\backslash\{u\}\)
    if \(d(u)=\alpha \vee \operatorname{succ}(u) \subseteq A \cup X\)
        if \(d(u)=\alpha\) then \(\tau[u]:=v\) with \(v \in(A \cup X) \cap \operatorname{succ}(u)\)
        \(X:=X \cup\{u\}\)
        todo \(:=\) todo \(\cup\left(\right.\) pred \(\left.^{\geq j}(u, U) \backslash X\right)\)
return \(X\)
FatalAttractorsOriginal \(\left(V, S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
\(J:=\{j \mid \exists u \in V: r(u)=j\}\)
\(S_{0}, \tau_{0}:=\operatorname{AttrDefaultWithTau}\left(S_{0}, 0, \tau_{0}\right)\)
\(S_{1}, \tau_{1}:=\operatorname{AttrDefaultWithTau}\left(S_{1}, 1, \tau_{1}\right)\)
    \(\alpha:=j \bmod 2\)
    \(U_{j}:=\{u \in V \mid r(u)=j \wedge(\alpha=0 \Rightarrow d(u) \neq\) false \() \wedge(\alpha=1 \Rightarrow d(u) \neq\) true \()\} \backslash S_{1-\alpha}\)
    \(X:=\emptyset\)
    while \(U_{j} \neq \emptyset \wedge U_{j} \neq X\)
        \(X:=U_{j}\)
        \(Y:=\) AttrMinRankOriginal \(\left(X \cup S_{\alpha}, \alpha, V, j\right)\)
        if \(U_{j} \subseteq Y\)
            for \(v \in Y \backslash S_{\alpha}\) do
                if \((\alpha=0 \wedge d(u)=\mathbf{\nabla}) \vee(\alpha=1 \wedge d(u)=\mathbf{\Delta})\) then
                        if \(v \in U_{j}\) then \(\tau_{\alpha}(v):=w\) with \(w \in \operatorname{succ}(v) \cap Y\)
                        else \(\tau_{\alpha}(v):=\tau(v)\)
            \(S_{\alpha}:=S_{\alpha} \cup Y\)
            \(S_{\alpha}, \tau_{\alpha}:=\operatorname{AttrDefaultWithTAU}\left(S_{\alpha}, \alpha, \tau_{\alpha}\right)\)
            break
        else
            \(U_{j}:=U_{j} \cap Y\)
return \(S_{0}, S_{1}, \tau_{0}, \tau_{1}\)
```

for $j \in J$

Note for setting strategy: when $U_{j} \subseteq Y$, we should set a strategy for all vertices $v \in U_{j} \backslash S_{\alpha}$ as follows: for each $v \in V_{\alpha} \cap\left(U_{j} \backslash S_{\alpha}\right)$, define $\tau(v): \in\{u \in Y \mid v \rightarrow u\}$.

5.9 Optimisation 7

In optimisation 7 the sets S_{0} and S_{1} are extended by solving a partial game.

```
\(\operatorname{PbesinstStructureGraph}_{7}\left(\mathcal{E}, X_{\text {init }}\left(e_{\text {init }}\right), R\right)\)
init \(:=R\left(X_{\text {init }}\left(e_{\text {init }}\right)\right)\)
todo \(:=\{\) init \(\}\)
discovered \(:=\{\) init \(\}\)
\((V, E):=(\emptyset, \emptyset)\)
\(S_{0}:=\emptyset\)
\(S_{1}:=\emptyset\)
while todo \(\neq \emptyset \wedge X_{\text {init }}\left(e_{\text {init }}\right) \notin S_{0} \cup S_{1}\) do
    choose \(X_{k}(e) \in\) todo
    todo \(:=\) todo \(\backslash\left\{X_{k}(e)\right\}\)
    \(\psi^{e}:=R\left(\varphi_{k}\left[d_{k}:=e\right]\right)\)
    \(\psi^{e}:=\) if \(\sigma_{k}=\mu\) then \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) false \(\left.]\right)\) else \(R\left(\psi^{e}\left[X^{e}:=\right.\right.\) true \(\left.]\right)\)
    \(\left(b, \psi^{e}\right):=R^{+}\left(\psi^{e}\right)\)
    if \(b=\) true then \(S_{0}:=S_{0} \cup\left\{X^{e}\right\}\)
    if \(b=\) false then \(S_{1}:=S_{1} \cup\left\{X^{e}\right\}\)
    \((V, E):=(V, E) \cup S G^{0}\left(X^{e}, \psi^{e}\right)\)
    todo \(:=\) todo \(\cup\left(\operatorname{occ}\left(\psi^{e}\right) \backslash\right.\) discovered \()\)
    discovered \(:=\) discovered \(\cup\) occ \(\left(\psi^{e}\right)\)
    \(S_{0}, S_{1}, \tau_{0}, \tau_{1}:=\operatorname{PartialSolve}\left(V\right.\), todo, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\) (executed periodically)
\(V:=\) ExtractMinimalStructureGraph \(\left(V\right.\), init, \(\left.S_{0}, S_{1}, \tau_{0}, \tau_{1}\right)\)
return \((V, E)\)
```

where PartialSolve is defined as
PartialSolve (V, todo, $S_{0}, S_{1}, \tau_{0}, \tau_{1}$)
\{use the solver to compute an over and underapproaximation\}
$S_{0}, \tau_{0}:=\operatorname{AttrDefaultWithTau}\left(S_{0}, 0, \tau_{0}\right)$
$S_{1}, \tau_{1}:=\operatorname{AttrDefaultWithTau}\left(S_{1}, 1, \tau_{1}\right)$
$\left(W_{0}, W_{1}\right):=\operatorname{SolveRECursive}\left(V \backslash\left(S_{1} \cup \operatorname{AttrDefaultNoStrategy}\left(S_{0} \cup\right.\right.\right.$ todo, 0$\left.\left.)\right)\right)$
for $v \in W_{1} \backslash S_{1}$ do if $d(u)=\boldsymbol{\Delta}$ then $\tau_{1}(v):=\tau(v)$
$S_{1}:=S_{1} \cup W_{1}$
$\left(W_{0}, W_{1}\right):=\operatorname{SolveRECursive}\left(V \backslash\left(S_{0} \cup \operatorname{AttrDefaultNoStrategy}\left(S_{1} \cup\right.\right.\right.$ todo, 1$\left.\left.)\right)\right)$
for $v \in W_{0} \backslash S_{0}$ do if $d(u)=\nabla$ then $\tau_{0}(v):=\tau(v)$
$S_{0}:=S_{0} \cup W_{0}$
return $S_{0}, S_{1}, \tau_{0}, \tau_{1}$

