
A rewriting-strategies-based tool for
transforming process-algebraic equations

Sergey V. Goncharov1, Arseniy Y. Rudich1, and Yaroslav S. Usenko2

1 Department of Theoretical Cybernetics,
National Taras Shevchenko University of Kyiv, Ukraine

2 Laboratory for Quality Software,
Technical University of Eindhoven, The Netherlands

1 Introduction

In this abstract we describe an attempt to implement a linearization algo-
rithm [?] for micro Common Representation Language (µCRL) [?].

This algorithm allows transforming specifications in µCRL to “simpler” ones,
containing just one Linear Process Equation (LPE). For the implementation we
use the program-transformation system Stratego [?] that is based on rewriting
strategies. Stratego allows to specify complex term-rewriting systems and their
application strategies, and to generate efficient C code from them, which can be
further compiled and executed. The implementation has been tested on a set of
examples of µCRL specifications, and the results were compared with an existing
implementation of µCRL linearization in C [?].

µCRL is an algebraic specification language based of ACP style process al-
gebra [?]. A distinct feature of µCRL in comparison with many other process
algebras is that it offers a uniform equational framework for specification of data
and processes. Data are specified by equational specifications: one can declare
sorts and functions on these sorts, and describe the meaning of these functions
by equational axioms. Processes are described using data-parametric systems of
equations that describe process behavior using process-algebraic operations ex-
tended with constructs for conditional composition and data-parametric choice.

Linear Process Equations (LPE) is an interesting subclass of systems of re-
cursive equations, which contain only one linear equation of special form. As it
turns out, the restriction to LPE format still yields an expressive setting. For
instance, in the design and construction of verification tools for µCRL, LPEs
establish a basic and convenient format that can be seen as a symbolic repre-
sentation of Labeled Transition Systems (LTSs).

The algorithms for reducing µCRL specifications to the linear form are de-
scribed in details in [?]. Each particular algorithm consists of a chain of trans-
formation steps that yield an equivalent µCRL specification with a form coming
closer to the desired linear one. Each transformation step is, in essence, an equiv-
alent transformation of a system of process equations. The steps are formally
described using term rewriting systems and different forms of their extensions
to equation rewriting systems. In some steps extra equations or data types are
added to the original µCRL specification.



For the implementation of the linearization algorithm we chose Stratego [?].
Strategois a system for the specification of fully automatic program transfor-
mation systems based on the rewriting strategies paradigm. Its language, aimed
to operate with terms, is based on rewriting concepts [?]. It has clear and well
thought-out syntax and semantics, and a very efficient implementation. Strat-
ego is based on ATerm library [?] for term representation, which supports maxi-
mal sharing and efficient automatic garbage collection. Parsing of input programs
to ATerms is done using the SDF toolset [?], which generates parsers for an ex-
tension of context-free grammars. All that makes writing clear, manageable and
efficient programs transformation programs easy, and therefore motivates our
choice of the implementation framework, in comparison with implementation in
plain C.

2 Details of Implementation

The basic concept of Stratego is a notion of rewriting strategy that is a rule
specifying how to apply given term rewriting system to a term. Every program
in Stratego contains the main strategy that, in fact, transforms the input term
into the output one. This main strategy is normally defined as a composition
(nondeterministic choice, sequential composition, congruent closure and others)
of simpler strategies.

For each linearization step described in [?], we generate a separate rewriting
step (rewriting strategy), and then the main strategy is, in essence, a sequential
composition of these steps.

3 Associative-Commutative Rewriting

In SDF grammar it is possible to specify that certain operations are commuta-
tive, associative, and/or idempotent; and the generated parser will use lists, bags,
or sets to represent the groups of operations. For example, in µCRL, alternative
composition (+) is an associative, commutative and idempotent operation, and
sequential composition (.) is an associative operation (there are more of such
operations). In the parse tree these operations will be represented by sets and
lists, respectively. However, to perform term rewriting module AC, we need to
adopt the rewrite rules to be able to deal with list and sets. As an example, if
the following rewrite rules

a+ b · c → a · c+ b · c
a+ 0 → a

0 · a → 0



have to be applied modulo associativity and commutativity, then the correspond-
ing list operations will have the following form:

⟨a1, a2, . . . , an, [b1, b2, . . . , bk], an+2, . . . , am⟩ →
⟨a1, a2, . . . , an, [⟨b1, an, . . . , am⟩, ⟨b2, an, . . . , am⟩, . . . , ⟨bk, an, . . . , am⟩]⟩

[a1, a2, . . . , an, 0, an+2, . . . , am] → [a1, a2, . . . , am]

⟨a1, a2, . . . , an, 0, an+2, . . . , am⟩ → ⟨a1, a2, . . . an⟩

A procedure to obtain such lifting rules is rather straightforward. Whenever
we have a binary associative operation in the left-hand-side of a rewrite rule,
we consider its extension to n terms, not just 2. Such a transformation was
sufficient for the case of our implementation; however it is not clear whether it
can be applied in more general cases.

4 Efficient Implementation of Simple Rewriting

One of the steps in linearization procedure consists of an application of a set
of simple term rewrite rules. It turns out that all terms in the left-hand-sides
of these rules have depth not bigger than 2. Experiment shows that in this case
the standard innermost rewriting strategy is suboptimal. To improve on this, a
custom strategy, called double-traversal, is used instead.

To use this strategy we split the set of rewrite rules in two. The rules from
one set are used when the rewriting process traverses the term down, and the
other set is used when the process traverses up. Initially, the process traverses
down from the top (as in the outermost strategy) and once a rule is applied, the
process traverses one step up, and repeats itself recursively. The process stops,
when it reaches all bottom (leaf) nodes and no rule can be applied any longer.

An interesting question is whether this strategy can be used with a wider
class of the rewrite systems.

5 Experimental Results and Future Work

At this point most of the linearization steps from [?] have been implemented. Cer-
tain optimization steps, like “regular linearization” and “operations on LPEs”,
have still to be implemented. We tested our linearization procedure on the ex-
amples available in the µCRL Toolset distribution [?].

A good sign is that both the implementation in the µCRL Toolset distribu-
tion and the ours produce LPEs that lead to bisimilar transition systems. This
was checked automatically using the bisimilarity checker from the µCRL Toolset.
Another good sign is that the performance of the new implementation is approx-
imately the same as of the existing one. However, we have still to try out more
realistic examples to compare the performances of the two implementations.

The number of generated states and transitions from the LPEs produced
by our implementation is sometimes substantially larger than in the original



implementation. This has still to be investigated. It can be due to the fact that
not all optimization steps have been implemented yet.

In the future we plan to implement all optimization steps that are described
in the literature. It is also interesting to extend the implementation to cover the
case of timed µCRL. Trying larger examples may lead to a need for optimization
of the rewriting procedures.

Acknowledgments The initial idea of the implementation is due to Jaco van
de Pol and Eelco Visser back in summer of 2001. Eelco has also helped us
with Stratego. An earlier attempt to implement the linearization algorithm in
Strategowas done by Konstantin O. Savenkov in [?].


