
mCRL2 syntax definition

Aad Mathijssen

April 26, 2024

This document describes the syntax of mCRL2 expressions and specifications. We present
the syntax in a rich text format. In Section 6 a translation of rich text to plain text is given,
which is needed for using the toolset.

Throughout this document, suggestive dots (. . ., · · ·) are used to indicate repeating
patterns with one or more occurrence. Furthermore, | distinguishes alternatives (not to be
mistaken with the pipe |), (pattern)+ indicates one or more occurrences of pattern, and
(pattern)∗ indicates zero or more occurrences of pattern. As opposed to real EBNF, we do
not use quotes to separate the terminals from the non-terminals.

1 Lexical syntax
We defined the notions of identifiers, numbers, whitespace and comments:

• An identifier is a string matching the pattern “[A−Za−z_][A−Za−z_0−9]∗”, exclud-
ing the following reserved words:

sort cons map var eqn act glob proc pbes init
struct Bool Pos Nat Int Real List Set Bag
true false if div mod in lambda forall exists whr end
delta tau sum block allow hide rename comm
val mu nu delay yaled nil

Identifiers are used for representing sort names b, function names f , data variable names
x, action names a, process reference names P , and propositional variable names X.

• A number is a string that matches the pattern “0” or “[1− 9][0− 9]∗”.

• Spaces, tabs and newlines are treated as whitespace.

• A %-sign indicates the beginning of a comment that extends to the end of the line.

2 Data specifications
Sort expressions s:

s ::= b | s → s | B | N+ | N | Z | R
| struct scs | · · · | scs | List(s) | Set(s) | Bag(s) | (s)

scs ::= f | f(spj , . . ., spj) | f?f | f(spj , . . ., spj)?f
spj ::= s | s× · · · × s → s | f : s | f : s× · · · × s → s

1

Here scs and spj stand for the constructor and projection functions of a structured sort. The
binary operator → associates to the right.

Data expressions d:

d ::= x | f | d(d, . . ., d) | N | true | false | if | ¬d | − d | d | #d | d ⊕ d
| [] | [d, . . ., d] | { } | { d, . . ., d } | { d : d, . . ., d : d } | {x : s | d }
| λmvd,. . .,mvdd | ∀mvd,. . .,mvdd | ∃mvd,. . .,mvdd | d whr x = d, . . ., x = d end
| (d)

mvd ::= x, . . ., x : s
⊕ ::= ∗ | . | ∩ | / | div | mod | + | − | ∪ | ++ | ◁ | ▷

| < | ≤ | ≥ | > | ⊂ | ⊆ | ∈ | ≈ | ̸≈ | ∧ | ∨ | ⇒

Here mvd stands for a multiple data variable declaration, ⊕ for a binary operator, and N
for a number. The unary operators have the highest priority, followed by the infix operators,
followed by λ, ∀ and ∃, followed by whr end. The descending order of precedence of the in-
fix operators is: { ∗, .,∩}, { /,div,mod }, {+,−,∪}, ++ , ◁ , ▷, {<,≤,≥, >,⊂,⊆,∈}, {≈, ̸≈
}, {∧,∨},⇒. Of these operators ∗, ., ∩, /, div, mod, +, −, ∪ and ++ associate to the left
and ≈, ̸≈, ∧, ∨ and ⇒ associate to the right.

Data specifications data_spec:

data_spec ::= sort (sd ;)+

| cons (mfd ;)+

| map (mfd ;)+

| var (mvd ;)+ eqn (ed;)+

| eqn (ed;)+

sd ::= b | b = s
mfd ::= f, . . ., f : s
ed ::= d = d | c → d = d

Here, sd stands for sort declaration, mfd for multiple function declaration, ed for equation
declaration, and ad for action declaration.

3 Process specifications
Process expressions p:

p ::= a | δ | τ | p+ p | p · p | P | p|p | p ∥ p | p T p
| ∇{ as,. . .,as }(p) | ∂{ a,. . .,a }(p) | τ{ a,. . .,a }(p) | ρ{ ar ,. . .,ar }(p) | Γ{ ac,. . .,ac }(p)
| a(d, . . ., d) | P (d, . . ., d) | P () | P (x = d, . . ., x = d)
| c → p ⋄ p | c → p |

∑
mvd,. . .,mvd p

| p ↪ t | t ≫ p | p ≪ q
| (p)

as ::= a| · · · |a
ar ::= a → a
ac ::= a|as → a | a|as → τ | a|as

Here, c and t stand for data expressions of sort B and R, respectively. For technical reasons,
c and t may not have an infix operator, a where clause or a quantifier at the top-level (paren-
theses should be used instead). as represents an action sequence, ar an action renaming,
and ac an action communication. The descending order of precedence of the operators is:
|, ↪, ·, {≫,≪},→, { ∥,T },

∑
,+. Of these operators +, ∥, T, · and | associate to the right.

2

Process specifications proc_spec:

proc_spec ::= (proc_spec_elt)∗

proc_spec_elt ::= data_spec
| act (ad ;)+

| glob (mvd ;)+

| proc (pd ;)+

| init p;
pd ::= P = p | P (mvd , . . .,mvd) = p
ad ::= a | a : s× · · · × s

Here proc_spec_elt represents a process specification element, pd a process definition, and
ad an action declaration. Furthermore, we impose the restriction that proc_spec should
contain precisely one occurrence of the keyword init.

4 Mu-calculus formulae
Multiactions ma:

ma ::= τ | pa | · · · | pa
pa ::= a | a(d, . . ., d)

Here, pa represents a parameterised action.
Action formulae α:

α ::= ma | α↪t | val(c) | (α)
| true | false | ¬α | α ∧ α | α ∨ α | α ⇒ α | ∀mvd,. . .,mvdα | ∃mvd,. . .,mvdα

Here, c and t stand for data expressions of sort B and R, respectively. For technical reasons,
t may not have an infix operator, a where clause or a quantifier at the top-level (paren-
theses should be used instead). The descending order of precedence of the operators is:
¬, ↪, {∧,∨},⇒, { ∀,∃ }. Of the infix operators ↪ associates to the left and ∧, ∨ and ⇒ asso-
ciate to the right.

Regular formulae φr:

φr ::= α | ϵ | φr · φr | φr + φr | φ∗
r | φ+

r | (φr)

The postfix operators ∗ and + have the highest priority, followed by ·, followed by infix +.
The infix operators associate to the right.

State formulae φs:

φs ::= [φr]φs | ⟨φr⟩φs | ∇(t) | ∆(t) | ∇ | ∆ | val(c) | (φs)
| νX.φs | µX.φs | νX(vdi , . . ., vdi).φs | µX(vdi , . . ., vdi).φs | X | X(d, . . ., d)
| true | false | ¬φs | φs ∧ φs | φs ∨ φs | φs ⇒ φs | ∀mvd,. . .,mvdφs | ∃mvd,. . .,mvdφs

vdi ::= x : s = d

Here vdi stands for a data variable declaration and initialisation, and c and t stand for
data expressions of sort B and R, respectively. For technical reasons, t may not have an
infix operator, a where clause or a quantifier at the top-level (parentheses should be used
instead). The descending order of precedence of the operators is: {¬,_[_],_⟨_⟩ }, {∧,∨},⇒
, { ∀,∃, µ, ν }. The infix operators ∧, ∨ and ⇒ associate to the right.

3

5 PBES’s
Parameterised boolean expressions φe:

φe ::= pvo | val(c) | (φe)
| true | false | ¬φe | φe ∧ φe | φe ∨ φe | φe ⇒ φe | ∀mvd,. . .,mvdφe | ∃mvd,. . .,mvdφe

pvo ::= X | X(d, . . ., d)

Here pvo stands for a propositional variable occurrence, The descending order of operator
precedence is: ¬, {∧,∨},⇒, { ∀,∃ }. The infix operators ∧, ∨ and ⇒ associate to the right.

Parameterised boolean equations pb_eqn:

pb_eqn ::= σ pvd = φe

σ ::= ν | µ
pvd ::= X | X(mvd , . . .,mvd)

Here σ stands for a fixpoint symbol, and pvd for a propositional variable declaration.
PBES specifications pbes_spec:

pbes_spec ::= (pbes_spec_elt)∗

pbes_spec_elt ::= data_spec
| glob (mvd ;)+

| pbes (pb_eqn;)+

| init pvo;

Here pbes_spec_elt represents a PBES specification element. We impose the restriction that
pbes_spec should contain precisely one occurrence of each of the keywords pbes and init.

4

6 Table of symbols
In the toolset, a plain text format is used as opposed to the rich text format of the previous
section. A mapping from rich text to plain text symbols is provided in Table 1.

Symbol Rich Plain
arrow → ->
cross × #
diamond ⋄ <>
standard sorts B,N+,N,Z,R Bool, Pos, Nat, Int, Real
equality and inequality ≈, ̸≈ ==, !=
logical operators ¬,∧,∨,⇒ !, &&, ||, =>
relational numeric operators ≤,≥ <=, >=
relational set operators ∈,⊆,⊂ in, <=, <
set operators _,∪,∩ !, +, *
list operators ▷, ◁ , ++ |>, <|, ++
lambda abstraction λx:sd lambda x:s.d
universal quantification ∀x:sφ forall x:s.phi
existential quantification ∃x:sφ exists x:s.phi
deadlock δ delta
internal action τ tau
left merge T ||_
sum

∑
x:s p sum x:s.p

allow ∇{ a|b }(p) allow({a|b},p)
block ∂{ a }(p) block({a},p)
hide τ{ a }(p) hide({a},p)
rename ρ{ a→b }(p) rename({a -> b},p)
communication Γ{ a|b→c }(p) comm({a|b -> c},p)
time ↪,≫,≪ @, >>, <<
negation of ultimate delay ∇ yaled
ultimate delay ∆ delay
nil ϵ nil
fixpoint symbol ν, µ nu, mu
maximal fixpoint νX(x : s = d).φ nu X(x:s = d).phi
minimal fixpoint µX(x : s = d).φ mu X(x:s = d).phi

Table 1: Mapping from rich to plain text

5

