
State Space Exploration

Wieger Wesselink

April 26, 2024

1 Graph Exploration

State space exploration is an instance of graph exploration. Consider a directed graph and take a node
s0. We assume there is a function successors that returns the successor nodes of a vertex. An abstract
algorithm for exploring the graph starting from vertex s0 is

Algorithm 1 Graph exploration

ExploreGraph(s0)

1: todo := {s0}
2: discovered := {s0}
3: while todo ̸= ∅ do
4: choose s ∈ todo
5: todo := todo \ {s}
6: discovered := discovered ∪ {s}
7: for s′ ∈ successors(s) do
8: if s′ /∈ discovered then
9: discovered := discovered ∪ {s′}

10: todo := todo ∪ {s′}

1.1 Event points

There are many different applications of state space exploration. The Boost Graph Library ([?]) uses a clever
idea to separate such applications from the exploration itself. It is done by distinguishing event points in
the algorithm that the user can respond to by means of callback functions. For our purposes we select the
following events:

discover state is invoked when a state is encountered for the first time
examine transition is invoked on every transition
start state is invoked on a state right before its outgoing transitions are being explored
finish state is invoked on a state after all of its outgoing transitions have been explored

The events are named in terms of states and transitions instead of vertices and edges, since this is closer to
our application domain. The exploration algorithm with event points included looks like this:

1

Algorithm 2 Graph exploration with event points

ExploreGraph(s0, discover state, examine transition, start state, finish state)

1: todo := {s0}
2: discovered := {s0}
3: discover state(s0)

4: while todo ̸= ∅ do
5: choose s ∈ todo
6: todo := todo \ {s}
7: start state(s)

8: discovered := discovered ∪ {s}
9: for s′ ∈ successors(s) do

10: if s′ /∈ discovered then
11: discovered := discovered ∪ {s′}
12: discover state(s′)

13: todo := todo ∪ {s′}
14: examine transition(s, a, s′)

15: finish state(s)

2 Applications

Many applications can be easily expressed in terms of the given event points.

2.1 Deadlock checking

With deadlock checking we are looking for states that have no outgoing transitions. By introducing one
boolean variable has transitions we can implement deadlock checking as follows. The callback functions are
printed as comments in gray.

Algorithm 3 Deadlock checking implemented using event points

Input:
FindDeadlock(s0, discover state, examine transition, start state, finish state)

1: ▷ bool has transitions
2: todo := {s0}
3: discovered := {s0}
4: discover state(s0)
5: while todo ̸= ∅ do
6: choose s ∈ todo
7: todo := todo \ {s}
8: start state(s) ▷ has transitions := false
9: discovered := discovered ∪ {s}

10: for s′ ∈ successors(s) do
11: if s′ /∈ discovered then
12: discovered := discovered ∪ {s′}
13: discover state(s′)
14: todo := todo ∪ {s′}
15: examine transition(s, a, s′) ▷ has transitions := true

16: finish state(s) ▷ if (!has transitions) report deadlock(s)

2

3 Search strategies

Exploration can be done with different search strategies. We describe three of them: breadth-first, depth-
first and highway. They mainly differ in the order in which the elements of the todo set are processed. In
breadth-first search nodes at the present depth are explored before nodes at a higher depth. In depth-first
search the highest-depth nodes are explored first. Highway search is a variant that uses a breadth-first
search, but it only explores a part of the state space.

In all three cases the todo list is stored in a double ended queue. We use the slicing operator to denote
parts of a list. For example, A[m : n] corresponds to the sublist A[m, . . . , n− 1].

3.1 Breadth-first search

Algorithm 4 Breadth-first search

Input:
ExploreGraphBreadthFirst(s0, discover state, examine transition, start state, finish state)

1: todo := [s0]

2: discovered := {s0}
3: discover state(s0)

4: while |todo| > 0 do

5: s := todo[0]

6: todo := todo[1 : |todo|]
7: start state(s)
8: discovered := discovered ∪ {s}
9: for s′ ∈ successors(s) do

10: if s′ /∈ discovered then
11: discovered := discovered ∪ {s′}
12: discover state(s′)

13: todo := todo++ [s′]

14: examine transition(s, a, s′)

15: finish state(s)

3.2 Depth-first search

3

Algorithm 5 Depth-first search

Input:
ExploreGraphDepthFirst(s0, discover state, examine transition, start state, finish state)

1: todo := [s0]

2: discovered := {s0}
3: discover state(s0)

4: while |todo| > 0 do

5: s := todo[|todo| − 1]

6: todo := todo[0 : |todo| − 1]

7: start state(s)
8: discovered := discovered ∪ {s}
9: for s′ ∈ successors(s) do

10: if s′ /∈ discovered then
11: discovered := discovered ∪ {s′}
12: discover state(s′)

13: todo := todo++ [s′]

14: examine transition(s, a, s′)

15: finish state(s)

3.3 Highway search

In highway search (see [?]) a breadth first search is done, with the restriction that at most N states are put
in the todo list for each level. The variable L maintains the number of states in the todo list corresponding
to the current level, and the variable c counts how many elements have been added corresponding to the
next level. Once c reaches the maximum value N , elements are being overwritten randomly.

Remark 1 The specification below deviates from the published version of highway search in the sense that
overwritten elements are added to the set discovered. To avoid this, the structure of the algorithm needs to
be changed significantly.

In Algorithm 1 of [?], the set Qd stores todo elements corresponding to the current level, and the set
Qd+1 stores todo elements corresponding to the next level. The algorithm above uses only one list todo that
stores both of them. At each iteration of the while loop the first L elements of todo list belong to the current
level, and the remaining elements belong to the next level. Furthermore, the algorithm above contains only
one application of a random generator, compared to two applications in the original version. The element
k is chosen randomly in the range [1, . . . , c]. There is an N/c probability that this value is in the range
[1, . . . , N]. If k is inside the range, the element in the todo list with index k (counting from the end) is
overwritten. This behaviour matches with the published version.

4

Algorithm 6 Highway search

Input:
ExploreGraphHighway(s0, N , discover state, examine transition, start state, finish state)

1: todo := [s0]
2: discovered := {s0}
3: discover state(s0)

4: L := |todo|
5: c := 0
6: while |todo| > 0 do
7: s := todo[0]
8: todo := todo[1 : |todo|]
9: start state(s)

10: for s′ ∈ successors(s) do
11: if s′ /∈ discovered then
12: discovered := discovered ∪ {s′}
13: discover state(s′)
14: c := c+ 1

15: if c ≤ N then

16: todo := todo++ [s′]

17: else
18: k := random({1, . . . , c})
19: if k ≤ N then

20: todo[|todo| − k] := s′

21: examine transition(s, a, s′)

22: finish state(s)

23: L := L− 1

24: if L = 0 then

25: L := |todo|
26: c := 0

5

4 Cycle detection

For cycle detection the event points in table 1.1 are insufficient. In [?] the following recursive depth first
algorithm is given:

Algorithm 7 Recursive cycle detection algorithm as specified in Boost

Input:
boost dfs recursive(u)

1: color[u] := gray
2: discover vertex(u)
3: for (a, v) ∈ out edges(u) do
4: examine edge(a, v)
5: if color[v] = white then
6: tree edge(a, v)
7: dfs recursive(v)
8: else if color[v] = gray then
9: back edge(a, v)

10: else
11: forward or cross edge(a, v)

12: color[u] := black
13: finish vertex(u)

The code in Boost uses an iterative version:
For our purposes we rewrite this as:
Whenever the back edge event is triggered, a cycle is found.

6

Algorithm 8 Iterative cycle detection algorithm as implemented in Boost

Input:
boost dfs iterative(u)

1: color[u] := gray
2: discover vertex(u)
3: stack := [(u, out edges(u))]
4: while |stack| > 0 do
5: u,E := stack.pop back()
6: while |E| > 0 do
7: a, v := E[0]
8: examine edge(u, a, v)
9: if color[v] = white then

10: tree edge(u, a, v)
11: stack.push back(u,E[1 :])
12: u := v
13: color[u] := gray
14: discover vertex(u)
15: E := out edges(u)
16: else
17: if color[v] = gray then
18: back edge(u, a, v)
19: else
20: forward or cross edge(u, a, v)

21: E := E[1 :]

22: color[u] := black
23: finish vertex(u)

Algorithm 9 Recursive cycle detection

Input:
dfs recursive(s0, gray)

1: gray := gray ∪ {s0}
2: discovered := {s0}
3: discover state(s0)
4: for (a, s1) ∈ out edges(s0) do
5: examine edge(s0, a, s1)
6: if s1 /∈ discovered then
7: tree edge(s0, a, s1)
8: discovered := discovered ∪ {s1}
9: dfs recursive(s1, gray)

10: else if s1 ∈ todo then
11: back edge(s0, a, s1)
12: else
13: forward or cross edge(s0, a, s1)

14: gray := gray \ {s0}
15: finish state(s0)

7

Algorithm 10 Iterative cycle detection

Input:
dfs iterative(s0)

1: todo := [(s0, out edges(s0))]
2: discovered := {s0}
3: discover state(s0)
4: while |todo| > 0 do

5: s, E := todo.back()
6: while |E| > 0 do
7: a, s1 := E.pop front()
8: examine edge(s0, a, s1)
9: if s1 /∈ discovered then

10: tree edge(s0, a, s1)
11: discovered := discovered ∪ {s1}
12: discover state(s1)
13: todo.back() := (s, E)
14: todo := todo++ [(s1, out edges(s1))]
15: s, E := todo.back()
16: else if s1 ∈ todo then
17: back edge(s0, a, s1)
18: else
19: forward or cross edge(s0, a, s1)

20: finish state(s)

5 Untimed state space exploration

Consider the following untimed linear process specification P , with initial state d0.

P (d) =
∑
i∈I

∑
ei

ci(d, ei) → ai(fi(d, ei)) · P (gi(d, ei))

This linear process is a symbolic representation of a state space, or labeled transition system (LTS). The
previously described graph exploration algorithms can be applied to explore a state space. Let rewr be a
rewriter. An algorithm for untimed state space exploration is

The set E is computed using the Enumerate algorithm. This computation may be expensive. Hence
the condition c(d, ei) is first rewritten, since if it evaluates to false the computation of E can be skipped.

8

Algorithm 11 Untimed LPS exploration

Input:
ExploreLPS(P (d), d0, rewr, discover state, examine transition, start state, finish state)

1: s0 := rewr(d0, [])
2: todo := {s0}
3: discovered := {s0}
4: discover state(s0)
5: while todo ̸= ∅ do
6: choose s ∈ todo
7: todo := todo \ {s}
8: discovered := discovered ∪ {s}
9: start state(s)

10: for i ∈ I do
11: condition := rewr(ci(d, ei), [d := s])
12: if condition = false then
13: continue
14: E := {e | rewr(condition, [ei := e]) = true}
15: for e ∈ E do
16: a := ai(rewr(fi(d, ei), [d := s, ei := e]))
17: s′ := rewr(gi(d, ei), [d := s, ei := e])
18: if s′ /∈ discovered then
19: todo := todo ∪ {s′}
20: discovered := discovered ∪ {s′}
21: discover state(s′)

22: examine transition(s, a, s′)

23: finish state(s)

6 Timed state space exploration

Consider the following timed linear process specification P , with initial state d0.

P (d) =
∑
i∈I

∑
ei

ci(d, ei) → ai(fi(d, ei)) ↪ti(d, ei) · P (gi(d, ei)).

Note that the time tag ti(d, ei) is optional. If it is omitted, the corresponding action may happen at an
arbitrary time. In timed state space exploration, care is taken that on every trace the time tags are increasing.
In order to achieve that, a time stamp is recorded for each state in the state space. We use the notation
t << s to denote the state s with associated time stamp t. An algorithm for timed state space exploration is

9

Algorithm 12 Timed LPS exploration

Input:
ExploreLPSTimed(P (d), d0, rewr, discover state, examine transition, start state, finish state)

1: s0 := rewr(d0, [])

2: todo := { 0 << s0) }

3: discovered := { 0 << s0) }
4: discover state(0 << s0)
5: while todo ̸= ∅ do
6: choose t << s ∈ todo

7: todo := todo \ { t << s }
8: discovered := discovered ∪ { t << s }
9: start state(t << s)

10: for i ∈ I do
11: condition := rewr(ci(d, ei), [d := s])
12: if condition = false then
13: continue
14: E := {e | rewr(condition, [ei := e]) = true}
15: for e ∈ E do
16: t′ := rewr(ti(d, ei), [d := s, ei := e])

17: if t′ ≤ t then
18: continue
19: a := ai(rewr(fi(d, ei), [d := s, ei := e]))
20: s′ := rewr(gi(d, ei), [d := s, ei := e])

21: if t′ << s′ /∈ discovered then

22: todo := todo ∪ { t′ << s′ }
23: discovered := discovered ∪ { t′ << s′ }
24: discover state(t′ << s′)

25: examine transition(t << s, a↪t′, t′ << s′)

26: finish state(t << s)

10

7 Stochastic state space exploration

Consider the following stochastic linear process specification P , with initial state p(h)
h · P (g(h)).

P (d) =
∑
i∈I

∑
ei

ci(d, ei) → ai(fi(d, ei))
pi(d,ei,hi)

hi
· P (gi(d, ei, hi)), (1)

where p and pi are stochastic distributions. We define a stochastic state as a set {(q1, s1), . . . , (qm, sm)}
with qj , j = 1 . . .m a sequence of non-zero probabilities that sum up to 1, and sj , j = 1 . . .m a sequence of
states. The function ComputeStochasticState is used to compute a stochastic state from its symbolic
representation.

Algorithm 13 Computation of a stochastic state

Input:
ComputeStochasticState(h, p, g, rewr, σ)

1: result := ∅
2: H := {(h′, q) | q = rewr(p, σ[h := h′]) ∧ q > 0}
3: for (h′, q) ∈ H do
4: s := rewr(g, σ[h := h′])
5: result := result ∪ {(q, s)}

return result

The set H is computed using the Enumerate algorithm.
An algorithm for stochastic state space exploration is

11

Algorithm 14 Stochastic LPS exploration

Input:
ExploreLPSStochastic(P (d), p(h)

h
·P (g(h)), rewr, discover state, examine transition, start state, finish state, discover initial state)

1: ŝ0 := ComputeStochasticState(h, p(h), g(h), rewr, [])

2: S := {si | (qi, si) ∈ ŝ0}

3: discover initial state(ŝ0)

4: for s ∈ S do
5: todo := todo ∪ {s}
6: discovered := discovered ∪ {s}
7: discover state(s)

8: while todo ̸= ∅ do

9: choose s ∈ todo
10: todo := todo \ {s}
11: discovered := discovered ∪ {s}
12: start state(s)
13: for i ∈ I do

14: condition := rewr(ci(d, ei), [d := s])
15: if condition = false then continue

16: E := {e | rewr(condition, [ei := e]) = true}
17: for e ∈ E do
18: a := ai(rewr(fi(d, ei), [d := s, ei := e]))

19: ŝ′ := ComputeStochasticState(hi, pi(d, ei, hi), gi(d, ei, hi), rewr, [d := s, ei := e])

20: S′ := {si | (qi, si) ∈ ŝ′}

21: for s′ ∈ S′ do
22: if s′ /∈ discovered then
23: todo := todo ∪ {s′}
24: discovered := discovered ∪ {s′}
25: discover state(s′)

26: examine transition(s, a, ŝ′)

27: finish state(s)

12

8 Caching

The computation of the set of solutions E in the ExploreLPS is expensive. Therefore it may be a good
idea to cache these solutions. Caching can be done locally (i.e. using a separate cache for each summand),
or globally. This leads to the following variants of the algorithm. We assume that FV is a function that
computes free variables of an expression. Let D be the set of process parameters (i.e. the elements of d).

8.1 Local caching

In the local caching algorithm for each summand i a mapping Ci is maintained. The cache key is comprised
of the actual values of the process parameters that appear in the condition ci(d, ei).

Algorithm 15 LPS exploration with local caching

Input:
ExploreLPSLocallyCached(P (d), d0, rewr, discover state, examine transition, start state, finish state)

1: s0 := rewr(d0, [])
2: todo := {s0}
3: discovered := {s0}
4: discover state(s0)

5: for i ∈ I do

6: Ci := {:}

7: γi := FV (ci(d, ei)) ∩ D

8: while todo ̸= ∅ do
9: chooses ∈ todo

10: todo := todo \ {s}
11: discovered := discovered ∪ {s}
12: start state(s)
13: for i ∈ I do
14: key := γi[d := s]

15: if key ∈ keys(Ci) then

16: E := Ci[key]

17: else
18: E := {e | rewr(ci(d, ei), [d := s, ei := e]) = true}

19: Ci := Ci ∪ {(key,E)}

20: for e ∈ E do
21: a := ai(rewr(fi(d, ei), [d := s, ei := e]))
22: s′ := rewr(gi(d, ei), [d := s, ei := e])
23: if s′ /∈ discovered then
24: todo := todo ∪ {s′}
25: discovered := discovered ∪ {s′}
26: discover state(s′)

27: examine transition(s, a, s′)

28: finish state(s)

8.2 Global caching

In the global caching algorithm one mapping C is maintained. To achieve this, the condition of the summands
is added to the cache key. If many summands share the same condition, global caching may be beneficial.
In practice this doesn’t seem to happen much.

13

Algorithm 16 LPS exploration with global caching

Input:
ExploreLPSGloballyCached(P (d), d0, rewr, discover state, examine transition, start state, finish state)

1: todo := {d0}
2: discovered := ∅
3: C := ∅
4: for i ∈ I do

5: γi := FV (ci(d, ei)) ∩ D

6: while todo ̸= ∅ do
7: chooses ∈ todo
8: todo := todo \ {s}
9: discovered := discovered ∪ {s}

10: start state(s)
11: for i ∈ I do
12: key := ci(d, ei) ++ γi[d := s]

13: if key ∈ keys(C) then

14: T := C[key]

15: else
16: T := {t | rewr(ci(d, ei), [d := s, ei := t]) = true}

17: C := C ∪ {(key, T)}

18: for e ∈ E do
19: a := ai(rewr(fi(d, ei), [d := s, ei := e]))
20: s′ := rewr(gi(d, ei), [d := s, ei := e])
21: if s′ /∈ discovered then
22: todo := todo ∪ {s′}
23: discovered := discovered ∪ {s′}
24: discover state(s′)

25: examine transition(s, a, s′)

26: finish state(s)

14

In this algorithm C is a mapping, with keys(C) = {k | ∃v : (k, v) ∈ C}. We use the notation C[k] to
denote the unique element v such that (k, v) ∈ C.

15

9 Confluence Reduction

Confluence reduction (see [?], [?] and [?]) is an on-the-fly state space exploration method that produces a
reduced state space. For confluence reduction we assume that the set of summands I is partitioned into a set
Ireqular of ’regular’ summands, and a set Iconfluent of confluent tau-summands. The confluent tau-summands
are used to determine a unique representative state that is reachable via confluent τ steps. This is done
using the graph algorithm FindRepresentative. This leads to the following variant of the algorithm:

Algorithm 17 LPS exploration with confluence reduction

Input:
ExploreLPSConfluence(P (d), d0, rewr, discover state, examine transition, start state, finish state)

1: s0 := FindRepresentative(rewr(d0, []))

2: todo := { s0}
3: discovered := {s0}
4: discover state(s0)
5: while todo ̸= ∅ do
6: choose s ∈ todo
7: todo := todo \ {s}
8: discovered := discovered ∪ {s}
9: start state(s)

10: for i ∈ Iregular do

11: condition := rewr(ci(d, ei), [d := s])
12: if condition = false then
13: Continue
14: E := {e | rewr(condition, [ei := e]) = true}
15: for e ∈ E do
16: a := ai(rewr(fi(d, ei), [d := s, ei := t]))

17: s′ := FindRepresentative(rewr(gi(d, ei), [d := s, ei := t]))

18: if s′ /∈ discovered then
19: todo := todo ∪ {s′}
20: discovered := discovered ∪ {s′}
21: discover state(s′)

22: examine transition(s, a, s′)

23: finish state(s)

As suggested in [?] Tarjan’s strongly connected component (SCC) algorithm (see [?]) can be used to
compute a unique representative.

9.1 Tarjan’s SCC algorithm

A recursive implementation of Tarjan’s strongly connected components algorithm that uses four global
variables stack, low, disc and result. The helper function StrongConnect computes the connected
component reachable from node u. In this function it is assumed that the function call successors(u) returns
the successor states of u in a deterministic order.

A side effect of a call Tarjan(u) is that result contains the connected components that have been found.

9.2 FindRepresentative

Due to properties of confluent τ -summands, there is always only one terminal strongly connected compo-
nent, i.e. a strongly connected component without outgoing edges. Furthermore, the first strongly connected
component reported by Tarjan’s algorithm is always terminating. For our implementation of FindRepre-
sentative we prefer to use an iterative version of Tarjan’s SCC algorithm. The reason for this is that an

16

Algorithm 18 Tarjan’s Strongly Connected Component Algorithm

Input: G = (V,E): A graph with nodes V and edges E.
Output: result: A sequence containing all strongly connected components of the graph.
Tarjan(G):

1: stack := []
2: low := {:} ▷ the empty mapping is denoted as {:}
3: disc := {:} ▷ u ∈ low means u is a key of mapping low
4: result := []
5: for u ∈ V do
6: if u /∈ low then StrongConnect(u)

7: return result

Algorithm 19 Helper function StrongConnect

Input: u: An element of V .
StrongConnect(u):

1: k := |disc| ▷ k is the discovery time that is assigned to node u
2: disc[u] := k
3: low[u] := k ▷ initially low[u] = disc[u]
4: stack := stack ++ [u]
5: for v ∈ successors(u) do
6: if v /∈ low then
7: StrongConnect(v)
8: low[u] := min(low[u], low[v])
9: else if v ∈ stack then

10: low[u] := min(low[u], disc[v])

11: if low[u] = disc[u] then ▷ an SCC has been found
12: comp := []
13: while true do
14: v := stack[|stack| − 1] ▷ assign the top of the stack to v
15: stack := stack[0 : |stack| − 1] ▷ pop an element from the stack
16: comp := comp++ [v]
17: if v = u then break
18: result := result++ [comp]

17

iterative version can be more easily interrupted once the first SCC has been found. The algorithm description
in [?] has been used as a model for our solution.

Algorithm 20 Find a unique representative node in a graph

Input:
FindRepresentative(u)

1: stack := []
2: low := {:}
3: disc := {:}
4: work := [(u, 0)]
5: while work ̸= [] do
6: (u, i) := work[|work| − 1]
7: work := work[0 : |work| − 1]
8: if i = 0 then
9: k := |disc|

10: disc[u] := k
11: low[u] := k
12: stack := stack ++ [u]
13: recurse := false
14: for j ∈ [i, . . . , |successors(u)|] do
15: v := successors(u)[j]
16: if v /∈ disc then
17: work := work ++ [(u, j + 1)]
18: work := work ++ [(v, 0)]
19: recurse := true
20: break
21: else if v ∈ stack then
22: low[u] := min(low[u], disc[v])

23: if recurse then continue
24: if low[u] = disc[u] then
25: result := u
26: while true do
27: v := stack[|stack| − 1]
28: stack := stack[0 : |stack| − 1]
29: if v == u then
30: break
31: if v < result then
32: result := v
33: return result
34: if work ̸= [] then
35: v := u
36: (u, z) := work[|work| − 1]
37: low[u] := min(low[u], low[v])

18

