
Some basic notions concerning the mCRL2 data library

Jeroen Keiren

26th April 2024

1 mCRL2

The language mCRL2 consists of data and processes. The data part contains an equational
specification. One can define sorts, functions working upon these sorts, and describe the
meaning of these functions by means of equational axioms. The process part contains pro-
cesses described in the style of CCS, CSP or ACP, with the particular process syntax taken
from ACP. It basically consists of a set of uninterpreted actions that may be parametrized
with data and time.

2 The syntax of mCRL2

See [?, Appendix B].

3 Data specification

A data specification consists of a number of sorts, a number of constructors for each sort, a
number ofmappings, and a set of equations. A data specification is an equational specification,
in which sorts denote types. The semantics of a sort is a set. The elements of the semantics
of a sort are described by its constructors, whereas the mappings are functions defined on
the semantics of sorts. The equations (axioms) describe equational properties of functions
and elements of the semantics. Note that every element of the semantics of a sort can be
constructed from its constructors, this is also known as “no junk”. It may however be the
case that an element can be described by several constructors, hence this construction does
not satisfy the “no confusion” property. The only exception to this are the booleans; true
and false are distinct elements.

3.1 Syntax

We define the syntax that is used to describe data in mCRL2.

Definition 3.1 (Sort expressions) We assume a set of basic sorts SBasic . Sort expressions
S are defined as follows, where B ∈ SBasic , and → is right-associative:

S ::= SBasic p SContainer p S × · · · × S → S p SStruct

with SContainer being defined as:

SContainer ::= List(S) p Set(S) p Bag(S)

1



The syntax of structured sorts SStruct is defined as follows (with p a string):

SStruct ::= p(proj∗)?p

in which proj has the following syntax:

proj ::= S p p:S

Structured sorts, with n ∈ N+, ki ∈ N with 1 ≤ i ≤ n, in general have the following form:

struct c1(pr1,1 : S1,1, . . . , pr1,k1 : S1,k1)?isc1

p c2(pr2,1 : S2,1, . . . , pr2,k2 : S2,k2)?isc2

p
...

p cn(prn,1 : Sn,1, . . . , prn,kn : Sn,kn)?iscn;

We refer to ci as the constructors of the structured sort. Si,j are the sorts of the arguments of
the constructors. pri,j are names for optional projection functions, retrieving the correspond-
ing argument for a constructor. isci are the names of optional recognizer functions, returning
a boolean value.

We call the set SContainer the container sorts and S\{SBasic ∪ SContainer ∪ SStruct} the set of
function sorts. In S0 × · · · × Sn → S we refer to S0, . . . , Sn as the domain, and to S as the
codomain of the sort.

The language also supports sort aliases like S0 = S1. In this case only one of the two is
treated as a sort, and the other is a reference to it.

Example 3.2 (Sort aliases) Consider a specification which has LNat = List(Nat). Now
data expressions x of sort LNat and x of sort List(Nat) are equivalent.

Definition 3.3 (Variables) We assume a set V of variable names with their associated
sorts.

We write Vs to refer to variables of sort s.

Definition 3.4 (Operations) The set of operations Ω consists of a set of constructors ΩC

and a set of mappings ΩM , i.e.
Ω = ΩC ∪ ΩM

All elements in Ω can be described, with n a function symbol, and S a sort, as follows

Ω ::= n:S

ΩC only contains expressions of the following form.

ΩC ::= n:SB p n:S × · · · × S → SB

This means that there are only constructors for basic sorts.

In the remainder we write ΩC,s to denote the constructors of sort s. That is those n in ΩC

with codomain s.

2



Definition 3.5 (Data expressions) We inductively define data expressions e, with sort
expressions S and variables x as follows:

e ::= x p n p e(e, . . . , e) p λx:S, . . . , x:S.e p ∀x:S, . . . , x:S.e p ∃x:S, . . . , x:S.e
p e whr x = e, . . . , x = e end p {x:S | e}

Here e(e, . . . , e) denotes application of data expressions, λx:S, . . . , x: : S.e denotes abstraction.
∀x:S, . . . , x:S.e and ∃x:S, . . . , x:S.e describe universal and existential quantification. {x:S | e}
denotes set or bag comprehension. Note that in the remiander we will write Λ to denote any
binding operator when describing rules that apply to all binding operators, i.e. λ, ∃, ∀, {}.

Convention 3.6 (System defined operators) We write system defined operators as infix
operators, hence we write b1 ∧ b2 for and(b1, b2), etc. For system defined operators we also
have a notion of operator precedence. See Section 4 for a complete overview of system defined
sorts.

Definition 3.7 (Signature) A signature Σ is a structure (SBasic ,Ω), where SBasic is a set
of sorts and Ω is a set of operations. SBasic contains at least B,N+,N,Z,R.

We now define the validity of data expressions with a number of syntax-directed derivation
rules.

Definition 3.8 (Valid data expressions) We assume a context Γ, which is a set of typing
statements of variables and operations used in the typing derivations. Note that we write
Γ, x:s as shorthand for Γ ∪ {x:s} and ∃1s to denote that there is exactly one such s.

x:s ∈ Γ
(Var)

Γ ⊢ x:s

n:s ∈ Γ
(Op)

Γ ⊢ n:s

Γ, x0:s0, . . . , xn:sn ⊢ e:s
(Abs)

Γ ⊢ (λx0:s0, . . . , xn:sn.e):s0 × · · · × sn → s

∃1s0,...,sn(Γ ⊢ t:s0 × · · · × sn → s Γ ⊢ t0:s0 . . . Γ ⊢ tn:sn)
(Appl)

Γ ⊢ t(t0, . . . , tn):s

∃1s0,...,sn(Γ ⊢ x1:s1 Γ ⊢ e1:s1 . . . Γ ⊢ xn:sn Γ ⊢ en:sn Γ, x0:s0, . . . , xn:sn ⊢ e:s)
(Where)

Γ ⊢ (e whr x0 = e0, . . . , xn = en end):s

Γ, x0:s0, . . . , xn:sn ⊢ e:B
(Forall)

Γ ⊢ (∀x0:s0, . . . , xn:sn.e):B

Γ, x0:s0, . . . , xn:sn ⊢ e:B
(Exists)

Γ ⊢ (∃x0:s0, . . . , xn:sn.e):B

Γ, x:s ⊢ e:B
(SetComp)

Γ ⊢ {x:s | e}:Set(s)

Γ, x:s ⊢ e:N
(BagComp)

Γ ⊢ {x:s | e}:Bag(s)

The Σ-algebra is characterized by means of equational logic. We describe the syntax of
formulae in the equational logic.

3



Definition 3.9 (Equations) Consider data expressions e, the syntactic set of equations
adheres to

E ::= e = e p e → e = e

We also introduce two rules for validity of equations.

∃1s(Γ ⊢ d:s Γ ⊢ e:s)
(Eq)

Γ ⊢ d = e

Γ ⊢ c : B ∃1s(Γ ⊢ d:s Γ ⊢ e:s)
(CondEq)

Γ ⊢ c → d = e

Definition 3.10 (Data specification) A data specification consists of sorts, constructors,
mappings and equations, i.e.

D = (S,Ω, E)

3.2 Semantics

Definition 3.11 (Σ-Algebra) A Σ-algebra A assigns meaning to signature Σ = (SBasic ,Ω)
by assigning a carrier set A(s) to each sort s. A(s) is the set containing the elements of sort
s. Furthermore it assigns a total function A(n:s), yielding an element of sort A(s), to each
operation n:s ∈ Ω. We write A(n) for A(n:s) when s is clear from the context.

Note that all elements from carrier set A(s) can be obtained from the constructors n:s ∈
ΩC .

Example 3.12 Suppose we have a signature Σ = (SBasic ,Ω), with

SBasic = {Nat}
ΩC = {zero:Nat , succ:Nat → Nat}
ΩM = {add:Nat ×Nat → Nat}

We give semantics to this by Σ-algebra A, where:

A(Nat) = N
A(Nat → Nat) = N → N

A(Nat ×Nat) → Nat = N× N → N
A(zero) = 0

A(succ) = λn:N.(n+ 1)

A(add) = λm, n:N× N.(m+ n)

All elements of a carrier set A(s) of sort s can be obtained by inductively applying the
constructors n : s ∈ ΩC of s. This process is referred to as enumeration. Note that this
requires all elements of other sorts s′ ∈ S that occur as subexpression in s.

Example 3.13 As an example of obtaining all elements of a sort from its constructors, let
us again look at the natural numbers Nat. We take a data expression representing a natural
number n, which according to the constructors of Nat could be either 0 or succ(n′)—the
successor of another natural number. We repeat this process for n′, and continue this way
until all variables have been eliminated. A tree representation of this is given in Figure 1.
Note that this process does not necessarily terminate.

4



n

succ(n′)

succ(succ(n′′))

. . .succ(succ(0))

succ(0)

0

Figure 1: Enumeration of natural numbers using 0 and succ

3.2.1 Variables and data expressions

In order to define the semantics of data expressions, we introduce the notion of assignment.
Using Vs to denote the variables of sort s from V , an assignment of a set of variables V for a
Σ-algebra A (α : V → A) is a family α = (αs)s∈S of total functions αs : Vs → A(s).

A meaning is given to a data expression e over a signature Σ extended with variables
V—in short e ∈ TΣ(V )—using a Σ-algebra A and an assignment α. It is called the value of e
for α and is denoted by A(α)(e). In the sequel we also write e ∈ TΣ(V ),s to denote the data
expressions over signature Σ and variables V of sort s. With ΛΛ we denote abstraction in the
semantic domain.

Definition 3.14 We define the notion of value inductively on the structure of e:

• A(α)(x) = αs(x), where x ∈ Vs and s ∈ S;

• A(α)(n) = A(n);

• A(α)(e(u0, . . . , un)) = A(α)(e)(A(α)(u0), . . . , A(α)(un)) where e ∈ TΣ(V ),s0×···×sn→s

and ui ∈ TΣ(V ),si

• A(α)(Λx0:s0, . . . , xn:sn.e) = ΛΛd0 ∈ A(s0), . . . dn ∈ A(sn).A(α[xi := di]0≤i≤n)(e)

• A(α)(e whr x0 = e0, . . . , xn = en end = A(α[xi := di]0≤i≤n)(e) where d0 ∈ A(s0) =
A(α)(e0), . . . dn ∈ A(sn) = A(α)(en) end

We introduce the syntactic notion of substitution. For a signature Σ = (S,Ω) and as-
sociated sets of variables V and W , a substitution is a family σ = (σs)s∈S of functions
σs : Vs → TΣ(W ),s. We denote this by σ : V → TΣ(W ).

Definition 3.15 (Substitution) We define the application of a substitution σ to a data
expression inductively as follows:

• σ(x) = σs(x), where x ∈ Vs and s ∈ S

• σ(n) = n, where n : S ∈ Ω

• σ(e(u0, . . . , un)) = σ(e)(σ(u0), . . . , σ(un))

5



• σ(Λx0, . . . , xn.e) = Λy0, . . . , yn.σ[xi := yi]0≤i≤n(e), if yi does not occur free in e and
σ(yi) = yi (for all 0 ≤ i ≤ n)

• σ(e whr x0 = e0, . . . , xn = en end) = σ[xi := yi]0≤i≤n(e) whr y0 = σ(e0), . . . , yn =
σ(en), if yi does not occur free in e and σ(yi) = yi (for all 0 ≤ i ≤ n)

Remark 3.16 There is a close relation between the syntactic notion of substitution and the
semantic notion of assignment. Assignments may simulate substitutions. For all signatures
Σ, associated sets of variables V,W , substitutions σ : V → TΣ(W ), Σ-algebras A, assignments
β : W → A, and data expressions e ∈ TΣ(V ), we have:

A(β)(σ(e)) = A(α)(e)

where assignment α : V → A is defined by α(x) = A(β)(σ(x)), for all x ∈ V .

3.2.2 Equational logic

The semantics of a formula in equational logic is expressed by a satisfaction relation.

Definition 3.17 (Satisfaction relation) For a Σ-algebra A, a condition c ∈ TΣ(V ),B, a
sort s ∈ S and data expressions d, e ∈ TΣ(V ),s, the satisfaction relation ⊨EL is defined by:

A ⊨EL c → d = e iff A(α)(d) = A(α)(e) and (A(α)(c) = true), for all assignments α : V → A

If A ⊨EL c → d = e, we say that d = e is valid in A. If c is omitted, we consider it to be true.

Definition 3.18 (Model) For a set of equations E ⊆ EL(Σ), a Σ-algebra A is called a
model of E if A ⊨EL eq, for all eq ∈ E.

We denote the class of all models of E as ModEL(E).

Definition 3.19 (Logical consequence) An equation eq ∈ EL(Σ) is called a logical con-
sequence of a set of equations E, iff eq is valid in all models of E, denoted E ⊨EL eq. That
is

E ⊨EL eq iff A ⊨EL eq, for all A ∈ ModEL(E)

3.2.3 Data specification

In mCRL2 the set of basic sorts SBasic is obtained by those sorts preceded with the sort
keyword. Function sorts may be used implicitly in the specification. The constructor functions
ΩC are those functions preceded be the cons keyword. The mappings ΩM are preceded by
map. Finally, the equations EL(Σ) are preceded by eqn.

3.3 Some notions on sorts

3.3.1 Finiteness

For some applications it is interesting to know whether sort is finite.

6



Let function DependentSorts : ΩC → 2S , that obtains the sorts on which a constructor
depends, be defined inductively as:

DependentSorts(n:s) =

{
∅ if s ∈ SBasic⋃

0≤i≤n({si} ∪ Sorts(si)) if s = s0 × · · · × sn → s′

Let the function Sorts : S → 2S , that obtains the sorts on which its argument depends,
be defined recursively as:

Sorts(s) =



⋃
n∈ΩC,s

DependentSorts(n) if s ∈ SBasic

Sorts(s′) if s ∈ SContainer⋃
0≤i≤n Sorts(si) ∪ {s′} if s = s0 × · · · × sn → s′⋃
0≤i≤n

⋃
0≤j≤mi

Sorts(si,j) if s = struct ci(pri,1:si,1, . . . , pri,mi :si,mi)?isci

for 0 ≤ i ≤ n, 1 ≤ j ≤ mi

We inductively define predicate Finite : S → B as follows:

Finite(s) =



ΩC,s ̸= ∅ ∧ s ̸∈ Sorts(s)

∧ (∀n ∈ ΩC,s :

(∀s′ ∈ DependentSorts(n) : Finite(s′))) if s ∈ SBasic

Finite(s′) if s = Set(s′)

false if s ∈ SContainer and s ̸= Set(s′) for all s′

(∀i : Finite(si)) ∧ Finite(s′) if s = s0 × · · · × sn → s′

s ̸∈ Sorts(s) ∧ (∀s′ ∈ Sorts(s) : Finite(s′))) if s = struct ci(pri,1:si,1, . . . , pri,mi :si,mi)?isci

for 0 ≤ i ≤ n, 1 ≤ j ≤ mi

3.3.2 Equivalence of sorts

For this topic see the note titled “An algorithm to find a representant for sorts in the context
of sort aliases and recursive sorts”.

3.4 Some notions on data expressions

Definition 3.20 (Free variables) We inductively define the set of free variables FV (e) of
a data expression e as follows:

FV (x) = {x}
FV (n) = ∅

FV (e(e0, . . . , en)) = FV (e) ∪
⋃

0≤i≤n

FV (ei)

FV (λx0:s0, . . . , xn:sn.e) = FV (e) \ {xi p 0 ≤ i ≤ n}

Definition 3.21 (Closed) We say that a data expression e is closed iff FV (e) = ∅.

7



4 Predefined sort specifications

mCRL2 provides a number of predefined sorts. For an overview of these sorts, with the full
specifications that are generated see [?, Appendix A].

5 Type checking

In mCRL2 types are only made explicit in function declarations and abstractions. For places
where type information is not explicitly included these can be inferred by a type-checking
algorithm if the specification is typable. This algorithm attempts to infer the types of ex-
pressions in the program from their contexts. Type checking is outside the scope of this
document.

5.1 Type conversion rules

The toolset supports a number of convenience functions A2B in order to cast numeric types. In
this A ̸= B, and A,B ∈ {Pos,Nat, Int,Real}. Of these, the type checker only uses upcasts,
e.g. Pos2Nat.

6 Rewriting

The rewriters used in mCRL2 [?] take the equations as defined in the data specification and
interpret these from left to right as rewrite rules. A rewrite rule means that an expression
matching the left hand side of this rule may be rewritten to the right hand side of the rule.
Additionally, a rewrite rule may be equipped with a condition, such that an expression is
only rewritten if the condition holds. Such rewrite rules are referred to as conditional rewrite
rules.

Rewriting of a data expression is done by repeatedly applying rewrite rules until a normal
form is reached, that is, until no rewrite rules can be applied to the expression. Note that the
mCRL2 toolset supports multiple rewrite strategies, which do not have the same termination
conditions. However, whenever the rewrite system derived from the data specification is
terminating, the rewriters will also terminate.

Rewriting is a purely syntactic manipulation. Given a set of rewrite rules a normal form
for a data expression is returned. If two expressions have the same normal form, they are
considered equal.

In rewriting we can parametrize a rewriter with a set of substitutions which are performed
during rewriting. This is mostly for performance reasons.

We consider a rewrite system R.

Definition 6.1 (Rewrite step) There is a rewrite step t →R u if there is a position π (of
a subterm of t), a rewrite rule l → r in R and a substitution σ, such that t|π = σ(l) and
u = t[π](σ(r)), with t|π the subterm of t at position π, and t[π]u is t with its subterm at
position π replaced by u.

Definition 6.2 (Normal form) At term t is in normal form when there is no rewrite step
t →R u.

8



Definition 6.3 (Rewrite sequence) A rewrite sequence t ↠R u is a sequence of rewrite
steps, such that t ↠R v and v →R u.

Definition 6.4 (Normal forms of a term) The normal forms of a term t are those terms
that occur as the last term in a rewrite sequence starting with t.

7 Proving

Proving is, like rewriting, a syntactic operation. However, where in rewriting the equations
are only interpreted left to right, the provers use the equations to their full extent. The
provers determine whether or not an expression of sort Bool is a tautology or a contradiction.
An in depth discussion of a prover for mCRL2 is presented by Luc Engelen [?].

8 Equality checking

In practice a lot of equality checking is performed, for example for evaluating conditions in
rewriters. In its basic form, the question is merely whether two terms are equal. In addition,
like in rewriting, substitutions may be provided to check whether to terms are equal under
a certain substitution. This is again for performance reasons. Checking for equality can be
performed by a rewriter as well as by a prover.

The requirements for an equality checker Eq are as follows:

Eq(true, false) ≡ false

Eq(e, e′) =⇒ e = e′

Thus, true and false are different, and if two terms are said to be equal, they are indeed
equal.

9 Enumeration

Let range(e) be the set of all possible values that data expression e can attain. A sort S is
enumerable iff a function enumS exists that maps an arbitrary data expression e of sort S
to a finite set of closed data expressions {e1, . . . , ek}, such that range(e) =

⋃k
i=1 range(ei).

By repeatedly applying enumS to non-constant data expressions xi, a tree expansion of the
data expression is obtained. The leafs of this tree form a finite representation of the data
expression. For data expressions of finite sort, this tree is always finite as well.

10 Mapping an data specification to the signature

In this section we map the current implementation of a data specification to the signature as
described in this document.

10.1 Details of the implementation up to revision 5967

We now map parts of the current (procedural style) implementation in the mCRL2 toolset to
the signature as described above. This is the implementation directly built upon the ATerm
library as it was available up to revision 5967 of the mCRL2 toolset.

9



10.1.1 Sort expressions

Sort expressions are the sort expressions S. Internally referred to as SortExpr. Note that
Sort identifiers, Arrow sorts, Sort references, Structured sorts and Container sorts are
all sort expressions.

Sort identifiers are the basic sorts SB. Internally referred to as SortId.

Arrow sorts are the function sorts S\{SBasic∪SContainer}. Internally referred to as SortArrow.

Sort references are the aliases S0 = S1. Internally referred to as SortRef.

Container sorts are the List(S), Set(S) and Bag(S) sorts. Internally these are referred to
as SortCons(Constructor type, SortExpr), in which SortExpr denotes the element
sort, and Constructor type is one of SortList, SortSet, SortBag to denote List,
Set and Bag sorts respectively.

Structured sorts are the Struct(S) sorts. Internally these are referred to as SortStruct(StructCons+),
in which StructCons+ is a non-empty list of constructors. A constructor has the
form StructCons(Name, StructProj*, Recogniser?). In this, Name represents the
name of the constructor (a string), Recogniser? represents the name of the recogniser
function for this constructor, which may be nil to denote that there is no recogniser.
StructProj* is a (possibly empty) list of expressions that denotes the arguments of the
constructor, with their optional projection functions. An expression for an argument
has the following form: StructProj(Name?, SortExpr), in this Name? denotes the
name of the argument, which is either a string or nil denoting that the argument has
no name. SortExpr denotes the sort of the argument.

10.1.2 Data expressions

Data expressions are the data expressions. Internally referred to as DataExpr.

Data variable is a variable of a certain sort. Internally referred to as DataVarId.

Data operation is a function with its sort, an element of Ω. Internally referred to as OpId.

Data application is an expression applied to a (number of) argument(s). Internally referred
to as DataAppl. Note that the sorts must match!

Binder is an expression that denotes abstraction, i.e. either a lambda abstraction, or a uni-
versal or existential quantification. This is denoted internally as Binder(BindingOperator,
DataVarId+, DataExpr), in which BindingOperator is one of Forall, Exists, Lambda,
SetBagComp, SetComp, BagComp, DataVarId+ is a non-empty list of variables over which
is abstracted in DataExpr.

10.2 Some notes on the data implementation up to revision 5967

The data implementation in the mCRL2 toolset had two—relatively closely related—tasks.
First of all it completed the equational specification for standard data types (Bool, Pos, Nat,
Int, Real). Furthermore it translated complex constructs (List, Set, Bag, structured sort)
that are present in the mCRL2 format after typechecking (before data implementation) away

10



to a simpler construct, and generated the corresponding equational specification, to facilitate
efficient rewriting.

10.2.1 Transformations for standard data types

In the data implementation phase, the following transformations were made:

• Rules for Bool, Pos, Nat, Int and Real were added

• Standard functions ≈, ̸≈, if were added

• Numerical pattern matching was implemented, this made sure that explicit casts (e.g.
Pos2Nat) were translated away. This way Pos2Nat(p:Pos) may be rewritten to p:Nat.

Observe that the rewrite rules that were introduced for the standard data types are closely
tailored to the setting in which rewriters are used. With this we mean that the equational
specification is constructed in such a way that efficient rewriting is possible. Therefore gen-
eration of equational specifications for system defined sorts is closely linked to the rewriter
that is used.

10.2.2 Data implementation of complex constructs

Complex constructs were implemented to a more simple form in order to facilitate a simpler
rewriting mechanism. Data implementation included the implementation of:

• Sort references

• Structured sorts

• List, Set and Bag sorts

• Binders

• Numeric constants

10.2.3 The need for a data implementation

As we have seen in the previous sections, it can be argued that the data implementation is
an implementation detail, tailored to efficient rewriting, and should be treated as such.

As a result of this, the data library gets an interface conforming to the current internal
format before data implementation, i.e. in the data library we should support high-level
concepts such as structured sorts, lists, sets, bags, binders and numeric constants. This
might typically also lead to an interface which could more easily incorporate support for
provers.

I would therefore propose such a high-level interface for the data library, but in order to
support facilities like rewriting and theorem proving, it should be able to make a systematic
translation between the data format and a format supported by e.g. a rewriter of a prover,
this way treating low-level details really as implementation issue for the used backend.

This results in a format in which the most fundamental transformation work, namely
that concerning system defined sorts, is always done immediately after type checking, i.e.
after typechecking numbers, lists, sets and bags are translated to the format as described in

11



Appendix A of [?]. However, as we also want to work on a level that remains close to the
level of theory, concepts such as binding and existential and universal quantification should
remain available at an interface level in the implementation. For more details on the specific
format that is used in the new data library see Section 11.7.

11 Designing a new data library

In the basic design for the new implementation of a data library we want to stick as close to
the theory as possible. Furthermore we want to integrate enumeration, rewriting and in the
end proving with this library.

11.1 Goals of the library

The goals of the data library is providing an interface that matches closely with the mCRL2
data types. In the current implementation, translations are made to a small core of the
language (the so called data implementation). Furthermore translations are made towards a
rewriter-specific format. Translations like these have to be prevented in the library we are
designing, as these imply performance penalties. In an ideal situation no such translations
remain.

Currently all system defined constructors/mappings/equations are added to the data spe-
cification. They are also included in the format which is saved on disk. This causes incompat-
ibilities between files generated by different version of the toolset. Therefore a stable storage
format is desired.

An important concern in the implementation is minimizing runtime memory usage. Per-
formance is of lesser importance then memory use.

11.2 Sort expressions

First of all we provide a design for the library part concerned with sort expressions. Note
that utility functions may be added when the need arises.

11.2.1 Classes

We provide an overview of the classes with a short description, we also describe their public
methods:

sort expression

description This denotes any sort expression that can be constructed from the
theory, hence any sort occurring in the signature of a specification.

subclass of

12



superclass of
• basic sort

• structured sort

• container sort

• function sort

public methods

is basic sort Returns true iff this expression is a basic sort.

is structured sort Returns true iff this expression is a struc-
tured sort.

is container sort Returns true iff this expression is a container
sort.

is function sort Returns true iff this expression is a function
sort.

basic sort

description This represents a basic sort, corresponding directly to the theory.

subclass of sort expression

superclass of

public methods
name Returns the name of the basic sort.

function sort

description This denotes a function sort S0 × ...× Sn → S, where S0, . . . , Sn

is the domain, and S is the codomain.

subclass of sort expression

superclass of

public methods
domain Returns the domain of the function sort. The domain of

S0 × · · · × Sn → S is S0, . . . , Sn.

codomain Returns the codomain of the function sort. The codo-
main of S0 × · · · × Sn → S is S.

13



sort_expression

+ is_basic_sort() : bool
+ is_structured_sort() : bool
+ is_container_sort() : bool
+ is_function_sort() : bool
+ is_alias() : bool

basic_sort

+ name() : string
function_sort

+ domain() : boost::iterator_range<sort_expression_list::iterator>
+ codomain() : sort_expression

structured_sort

+ projection_functions() : boost::iterator_range<function_symbol_list::iterator>
+ recognisers() : boost::iterator_range<function_symbol_list::iterator>

container_sort

+ container_name() : string
+ element_sort() : sort_expression

alias

+ name() : string
+ reference() : sort_expression

«datatype»
sort_expression_list

«datatype»
basic_sort_list

«datatype»
structured_sort_list

«datatype»
container_sort_list

«datatype»
function_sort_list

«datatype»
alias_list

Figure 2: Class model for the sort expressions (in namespace data)

structured sort

description This denotes a structured sort

struct c1(pr1,1 : S1,1, . . . , pr1,k1 : S1,k1)?isc1

| c2(pr2,1 : S2,1, . . . , pr2,k2 : S2,k2)?isc2

|
...

| cn(prn,1 : Sn,1, . . . , prn,kn : Sn,kn)?iscn;

where c1, . . . , cn are called the constructors. In the sequel, where
we write Structexample, this entire structured sort should be sub-
stituted.
pri,j are called the projection functions. Note that the sort of
projection function function pri,j is Structexample → Si,j . isci are
called recogniser functions. The sort of recogniser function isci is
Structexample → Bool

subclass of sort expression

superclass of

14



public methods
projection functions Returns the projection functions of the

structured sort.

recognizers Returns the recogniser functions of the structured
sort.

structured sort constructors Returns the constructors of the
structured sort, including the projection and recogniser func-
tions.

container sort

description This represents container sorts. These are sorts with a name and
an element sort. An example of this is List(Nat), representing the
List of natural numbers. In this, List is the name of the container,
and Nat is the element sort.

subclass of sort expression

superclass of

public methods
container name Returns the name of the container. For ex-

ample the container name of List(Nat) is List.

element sort Returns the sort of the elements of the container.
For example the element sort of List(Nat) is Nat.

11.2.2 Lists of sorts

For all classes concerned with sorts, list types are proved of the form class list. This amounts
to the following types:

sort expression list List of sort expressions

basic sort list List of basic sorts

structured sort list List of structured sorts

container sort list List of container sorts

function sort list List of function sorts

alias list List of aliases

All these list types provide iterator interfaces.

15



data_expression

+ sort() : sort_expression
+ is_where_clause() : bool
+ is_variable() : bool
+ is_function_symbol() : bool
+ is_application() : bool
+ is_abstraction() : bool
+ is_closed() : bool

variable

+ name() : string

application

+ head() : data_expression
+ arguments() : boost::iterator_range<data_expression_list::iterator>

abstraction

+ binding_operator() : string
+ variables() : boost::iterator_range<variable_list::iterator>
+ body() : data_expression
+ is_forall() : bool
+ is_exists() : bool
+ is_lambda() : bool

where_clause

+ body() : data_expression
+ declarations() : boost::iterator_range<assignment_list::iterator>

«datatype»
variable_list

«datatype»
data_expression_list

«datatype»
abstraction_list

«datatype»
function_symbol_list

«datatype»
application_list

assignment

+ ()(d : data_expression) : data_expression
+ lhs() : variable
+ rhs() : data_expression

«datatype»
assignment_list

lambda forall exists

function_symbol

+ name() : string
+ arity() : size_t

Figure 3: Class model for the data expressions (in namespace data)

16



11.3 Data expressions

11.3.1 Classes

data expression

description This denotes a data expression. The data expression structure
corresponds directly to the definition in the theory.

subclass of

superclass of
• variable

• function symbol

• application

• abstraction

• where clause

public methods

sort Returns the sort of the data expression.

is variable Returns true iff the data expression is a variable.

is function symbol Returns true iff the data expression is a
function symbol.

is abstraction Returns true iff the data expression is an abstrac-
tion.

is application Returns true iff the data expression is an applic-
ation.

is where clause Returns true iff the data expression is a where
clause.

is closed Returns true iff the data expression is closed.

variable

description This denotes a variable.

subclass of data expression

superclass of

public methods
name Returns the name of the variable.

17



function symbol

description This denotes function symbols.

subclass of data expression

superclass of

public methods
name Returns the name of the function symbol.

arity Returns the arity of this function.

abstraction

description This denotes lambda abstraction. Body is the data expression
which is abstracted from, variables contains the abstraction vari-
ables.

subclass of data expression

superclass of
• lambda

• forall

• exists

public methods

binding operator Returns the binding operator of the abstrac-
tion.

variables Returns the binding variables of the abstraction. Note
that this is never empty.

body Returns the body of the abstraction, i.e. the expression
that is abstracted.

is lambda Returns true iff the abstraction is a lambda abstrac-
tion.

is forall Returns true iff the abstraction is a universal quantific-
ation.

is exists Returns true iff the abstraction is an existential quan-
tification.

application

description This denotes application of a data expression (head) to a number
of other data expressions (arguments).

18



subclass of data expression

superclass of

public methods
head Returns the head of the application. For example the head

of t(t0, . . . , tn) is t.

arguments Returns the arguments of the application. For ex-
ample the arguments of t(t0, . . . , tn) are t0, . . . , tn.

lambda

description This denotes lambda abstraction. This is an abstraction with
binding operator lambda.

subclass of abstraction

superclass of

public methods

forall

description This denotes universal quantification. This is an abstraction with
binding operator forall.

subclass of abstraction

superclass of

public methods

exists

description This denotes existential quantification. This is an abstraction
with binding operator exists.

subclass of abstraction

superclass of

public methods

where clause

description This denotes a where clause, e.g. e whr x0 = e0, . . . xn = en.
Note that this behaves as a beta redex.

subclass of data expression

superclass of

19



public methods
body Returns the body of the where clause.

declarations Returns the local declarations of the where clause.

assignment

description This describes an assignment of a value (data expression) to a
data variable.

subclass of

superclass of

public methods
()(d) Returns d in which the assignment has been applied.

lhs Returns the variable which is assigned a value.

rhs Returns the data expression which is assigned to the variable.

11.3.2 Lists of data expressions

For all classes concerned with data expressions, list types are proved of the form class list.
This amounts to the following types:

data expression list List of data expressions

variable list List of variables

abstraction list List of abstractions

function symbol list List of function symbols

application list List of applications

assignment list List of assignments

All these list types provide iterator interfaces.

11.4 Data specification

A data specification represents a signature Σ with an associated set of equations E.

11.4.1 Classes

data specification

20



description This represents a data specification, directly from the theory.
Note that sort aliases are included in the specification explicitly.1

subclass of

superclass of

1Note that additional methods may be added as the need arises.

21



public methods
sorts Returns all sorts in the specification, except the function

sorts.

constructors Returns all constructors declared in the specifica-
tion.

mappings Returns all mappings declared in the specification.

equations Returns all equations declared in the specification.

aliases(s) Returns all aliases of sort s.

dependent sorts(constructor) Returns all sorts on which a
constructor depends. See also Section 3.3.1.

dependent sorts(sort) Returns all sorts on which a sort de-
pends. See also Section 3.3.1.

constructors(sort) Returns all constructors of sort.

mappings(sort) Returns all mappings which have sort as a res-
ult.

equations(d) Returns all equations with d as the head of one of
its sides.

is certainly finite(s) Returns true iff sort s is definately finite.

default expression Returns a valid data expression according
to this data specification of the given sort s. If no valid
expression can be found, an exception is thrown. It returns a
minimal term. When selecting function symbols, constructor
symbols have a preference over mappings. For each sort, the
same term is returned.

add sort Adds a sort to the specification.

add alias Adds an alias, so a name for a (possibly new) sort to
the specification.

add constructor Adds a constructor to the specification.

add mapping Adds a mapping to the specification.

add equation Adds an equation to the specification.

add sorts(sl) Adds all sorts in sl to the specification.

add constructors(fl) Adds all constructors in fl to the specific-
ation.

add mappings(fl) Adds all mappings in fl to the specification.

add equations(el) Adds all equations in el to the specification.22



alias

description This denotes an alternative name for a sort, i.e. S0 = S1.

subclass of sort expression

superclass of

public methods
name Returns the name of the alias. For example the name of

the alias S = T is S.

reference Returns the sort the name refers to. For example the
reference of the alias S = T is T .

data equation

description This represents a conditional equation, in which variables may be
used.

subclass of

superclass of

public methods
variables Return the variables from the variable declaration sec-

tion of the data equation.

condition Returns the condition of the equation.

lhs Returns the left hand side of the equation.

rhs Returns the right hand side of the equation.

11.4.2 Lists

In addition to the lists defined so far, we also have the following list:

data equation list A list of data equations.

23



data_equation

+ variables() : boost::iterator_range<variable_list::iterator>
+ condition() : data_expression
+ lhs() : data_expression
+ rhs() : data_expression

«datatype»
data_equation_list

data_specification

+ sorts() : sort_expression
+ constructors() : boost::iterator_range<function_symbol_list::iterator>
+ mappings() : boost::iterator_range<function_symbol_list::iterator>
+ equations() : boost::iterator_range<data_equation_list::iterator>
+ aliases(s : sort_expression) : boost::iterator_range<alias_list::iterator>
+ dependent_sorts(constructor : function_symbol) : boost::iterator_range<sort_expression_list::iterator>
+ dependent_sorts(s : sort_expression) : boost::iterator_range<sort_expression_list::iterator>
+ default_expression(s : sort_expression) : data_expression
+ add_sort(s : sort_expression)
+ add_constructor(f : function_symbol)
+ add_mapping(f : function_symbol)
+ add_equation(e : data_equation)
+ add_sorts(sl : boost::iterator_range<sort_expression_list::iterator>)
+ add_constructors(fl : boost::iterator_range<function_sort_list::iterator>)
+ add_mappings(fl : boost::iterator_range<function_sort_list::iterator>)
+ add_equations(el : boost::iterator_range<data_equation_list::iterator>)
+ constructors(s : sort_expression) : boost::iterator_range<function_symbol_list::iterator>
+ mappings(s : sort_expression) : boost::iterator_range<function_symbol_list::iterator>
+ equations(f : data_expression) : boost::iterator_range<data_equation_list::iterator>
+ is_certainly_finite(s : sort_expression) : bool

Figure 4: Class model for the data specification (in namespace data)

11.5 Utilities

This section describes a number of utilities for simplifying data expressions, and deciding
equality. Note that this section merely describes minimal interfaces the actual components
should adhere to.

11.5.1 Classes

rewriter

description A rewriter uses the equations from a data specification to obtain
a normal form for a data expression. Upon construction time of
the rewriter object a data specification is provided.

subclass of

superclass of

public methods
()(d) returns the normal form of d

()(d, sigma) returns the normal form of d. On the fly the sub-
stitutions in sigma are performed. This is a variant of the
rewriter which allows for more efficient rewriting in some
cases.

enumerator data expression

24



description Contains a data expression which should be enumerated, and the
variables that should be expanded

subclass of

superclass of

public methods
data expression Gives the data expression it contains.

variables Gives the variables to be expanded.

is closed Returns true if the data expression is closed.

enumerator

description An enumerator returns the set of all possible values that a term
can attain.

subclass of

superclass of

public methods
enumerate(d) Gives the set of all possible values that d can

attain.

enumerate one level(ed) Gives the set resulting from expand-
ing all variables of ed in the data expression of ed exactly
once.

equality checker

description Determines whether two expressions are equal. If equality cannot
be decided, false is returned.

subclass of

superclass of

public methods
()(t,t’) Returns yes if t and t′ are equal, no if they are not equal,

unknown otherwise.

()(t,t’, sigma) Returns yes if t and t′ are equal under substitu-
tion sigma, no if they are not equal under sigma, unknown
otherwise.

prover

description A prover determines whether a boolean expression is either a
tautology or a contradiction. Note that it may be the case that a
formula is neither a tautology, nor a contradiction.

25



subclass of

superclass of

public methods
is tautology(d) Returns yes if data expression d is a tautology,

no if d is not a tautology, unknown otherwise.

is contradiction(d) Returns yes if data expression d is a contra-
diction, false if d is not a contradiction, unknown otherwise.

fresh variable generator

description Generates variables with names that do not appear in the given
context.

subclass of

superclass of

public methods
add to context Adds a term to the context.

hint Returns the current hint that is used in the generated vari-
able name.

()(v) Returns a fresh variable of the same sort as v using the
name of v as hint.

()() Returns a fresh variable of sort sort using hint.

set context Sets the context to given term.

set hint Sets the hint.

set sort Sets the sort of the variables to be generated.

sort Returns the current sort of variables that are generated.

data eliminator

description Facilitates elimination of unused or unnecessary parts of a data
specification.

subclass of

superclass of

26



public methods
keep sort Keep the sort, and all sorts it depends on.

keep data from data expression Keep the sorts and map-
pings used in data expression.

() Remove all sorts and data expressions that should not be kept
from the data specification.

11.5.2 Lists

For the classes in utilities we also have lists, with their corresponding iterators:

enumerator data expression list A list of enumerator data expressions.

11.5.3 Type definitions

In order to denote that an answer is unknown in the equality checker and the prover we
introduce a tri-valued type answer with the obvious meaning.

11.5.4 Utility functions

There are also a number of utility functions in the data library that are plain functions. These
will be described in this section.

find First of all there are a number of find functions which follow the find functions in the
details section of the current data library. We will only give their names here.

find data expression

find data variable

find data application

find function symbol

find abstraction

find all data expressions

find all data variables

find all data applications

find all function symbols

find all abstractions

find sort expression

find basic sort

27



rewriter

+ ()(d : data_expression) : data_expression
+ ()(d : data_expression, sigma : boost::iterator_range<substitution_list::iterator>) : data_expression

prover

+ is_tautology(d : data_expression) : answer
+ is_contradiction(d : data_expression) : answer

equality_checker

+ ()(d1 : data_expression, d2 : data_expression) : answer
+ ()(d1 : data_expression, d2 : data_expression, sigma : boost::iterator_range<substitution_list::iterator>) : answer

enumerator

+ enumerate(d : data_expression) : boost::iterator_range<data_expression_list::iterator>
+ enumerate_one_level(ed : enumerator_data_expression) : boost::iterator_range<enumerator_data_expression_list::iterator>

«enum»
answer
yes
no
unknown

enumerator_data_expression

+ data_expression() : data_expression
+ variables() : boost::iterator_range<variable_list::iterator>
+ is_closed() : bool

Term
fresh_variable_generator

+ add_to_context(t : <Term>)
+ hint() : string
+ ()(v : variable) : variable
+ ()() : variable
+ set_context(context : <Term>)
+ set_hint(hint : string)
+ set_sort(s : sort_expression)
+ sort() : sort_expression

data_elimination

+ keep_sort(s : sort_expression)
+ keep_data_from_data_expression(d : data_expression)
+ ()(s : data_specification) : data_specification

Figure 5: Class model for the utilities (in namespace data)

28



find structured sort

find container sort

find alias

find all sort expressions

find all basic sorts

find all structured sorts

find all container sorts

find all aliases

replace Additionally there are a number of functions to facilitate replacements. Again this
follows the same pattern as in the current implementation, and we provide reference to the
names only.

replace data expressions

replace data variables

replace basic sorts

replace sort expressions

11.6 System defined functions and equations

For each system defined sort, i.e. Bool, Pos, Nat, Int and Real, utility functions will be
created to add the declarations of these sorts, with their constructors, mappings and equations
to a data specification. For other system defined mappings and equations similar functions
will be constructed. Note that for everything that is added in this way, it is recorded that it
is system defined. Furthermore utility functions will be added to facilitate easy manipulation
of these system defined sorts.

11.7 The internal format used in the new data library design

As noted before, the format used in the new data library is an intermediate format between
the internal format after typechecking and the internal format after data implementation as
used up to revision 5976. In essence it is the format after typechecking, except for some
minor adjustments. Namely, numbers, lists, sets and bags are stored in their concrete, or
implemented, form, i.e. they are stored according to the specification given in Appendix A
of [?]. This is the format assumed in the data library. Furthermore there are facilities that
automatically import the necessary declarations for standard data types. This functionality
is provided by the function make complete.

The rewriters still use their original (undocumented) formats, however, as we now do have
binders available explicitly on the data library level (along with where clauses), these need to
be translated away to a rewrite rules. This translation is carried out internally in the interface
to the rewriters that is provided by the data library.

29


