
Implementation of LTSGraph3D

Ali Deniz Aladagli

April 26, 2024

Contents

1 Introduction 1

2 Utils namepace 1
2.1 Utils::Vect . 1
2.2 vecLength . 1
2.3 angDiff . 1
2.4 dotProd . 2
2.5 MultGLMatrices . 2
2.6 genRotArbAxs . 2
2.7 GLUnTransform . 3

3 State 3

4 Transition 3

5 LTSGraph3D 4
5.1 LTSGraph3D::moveObject . 4
5.2 LTSGraph3D::getCanvasMdlvwMtrx 5
5.3 LTSGraph3D::getCanvasCamPos 6

6 GLCanvas 6
6.1 GLCanvas::display . 6
6.2 Mouse Functions . 8
6.3 GLCanvas::pickObjects . 8
6.4 GLCanvas::getCamPos . 9
6.5 GLCanvas::getSize . 9
6.6 GLCanvas::getMdlvwMtrx . 9

7 Visualizer 9
7.1 Visualizer::drawStates . 9
7.2 Visualizer::drawState . 10
7.3 Visualizer::drawTransition . 10
7.4 Visualizer::drawSelfLoop . 10
7.5 Visualizer::drawArrowHead . 11

8 Springlayout 11
8.1 Springlayout::layoutGraph . 11

1

1 Introduction

The ltsgraph tool allows the visualization of a given labeled transition system,
an LTS, as a graph and the manipulation of its layout. These graphs are state
spaces, where every transition is directed and has a label. The ltsgraph tool
visualizes this state space only in two dimensions. The LTSGraph3D tool dis-
cussed in this report visualizes a graph of a LTS in three dimensions. The
changes in classes with respect to the implementation of ltsgraph are discussed
through sections 2 to 8.

2 Utils namepace

The Utils namespace provides the LTSGraph3D tool with some general utilities
that are required in the program, such as a combined 3D position variable,
vector and matrix operations. The rotation matrix generating function is also
defined here.

2.1 Utils::Vect

The Utils::Vect is a structure that defines three double precision numbers that
are either used to represent the x, y and z coordinates of an object or a vector
in 3D space. It is used by the State class to represent the positions of the states.
It is also used in the matrix normalization in the GLCanvas class.

2.2 vecLength

The vecLength method returns the length of the vector by using the Pythagoras
theorem in 3D.

2.3 angDiff

Given two vectors the angDiff function returns the angle between these two
vectors in radians, by using the fact that the dot product of two vectors is equal
to the product of the two vectors’ lengths multiplied by the cosine of the angle
between them. Given the length found by Utils::vecLength and the dot product
found by Utils::dotProd, this angle can be found by using the arccos function.
To prevent errors, produced by the lack of precision of double variables, the
value of the input to the arccos function is always provided in the [-1,1] interval
where the function is defined.

2.4 dotProd

Given two vectors, the dotProd function returns their dot product.

2.5 MultGLMatrices

The MultGLMatrices function takes in two arrays of size 16 that represent two
4×4 matrices that are lined up according to their notation in OpenGL. A matrix

2

M4×4 would be represented by an array A of size 16 as below:
A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15


Using this notation, this method multiplies the first matrix by the second and
returns the answer as the third parameter.

2.6 genRotArbAxs

Given an angle and the normal of the axis to be rotated about, the genRotAr-
bAxs function generates a rotation matrix.
To create a rotation matrix the unit vector of the rotation axis is needed. Ac-
cording to right handed rotations used in OpenGL the unit vector of the rotation
matrix can be found as below:

α = arctan
(
y
x

)
, Ux = −sin(α) , Uy = cos(α)

Where x and y are the x and y components of the input normal vector and Ux

and Uy are the x and y components of the unit vector U⃗ of the rotation axis.
Since rotation around the z-axis is not needed in the program, calculations
involving the z component is ignored. A rotation matrix around an arbitrary
axis given by its unit vector can be generated as below:


(1− c) ∗ U2

x + c (1− c) ∗ Ux ∗ Uy + s ∗ Uz (1− c) ∗ Ux ∗ Uz − s ∗ Uy 0
(1− c) ∗ Ux ∗ Uy − s ∗ Uz (1− c) ∗ U2

y + c (1− c) ∗ Uy ∗ Uz + s ∗ Ux 0
(1− c) ∗ Ux ∗ Uy + s ∗ Uy (1− c) ∗ Uy ∗ Uz − s ∗ Ux (1− c) ∗ U2

z + c 0
0 0 0 1


Where c is cosine of the angle to be rotated, s is the sinus of the angle to be
rotated and Uz is the z coordinate of the unit vector of the axis. However in
the implementation used in this tool, Uz is always taken as zero.

2.7 GLUnTransform

Given a modeling and viewing transformation matrix, the GLUnTransform func-
tion reverses these transformations for a given vector. To do this, the following
facts are used:

• The inverse of a rotation matrix is equal to its transpose, since the deter-
minant of a proper rotation matrix is equal to 1.

• To reverse effects of a modeling and viewing transformation matrix, the
inverse of that matrix is required.

Since a rotation matrix is itself a modeling and viewing transformation matrix,
a prerequisite that the input matrix is a proper rotation matrix lets us use
these two facts. Even if the input matrix contains translations in the rightmost
column, it can be ignored since when transposed, this column will only affect the
fourth coordinate of the input vector (which defines how it will be affected by

3

further translations, but will not be used in this program again). The transpose
of the input 4 × 4 and 4 × 1 coordinates to be reversed are multiplied using
matrix multiplication. And the first three elements of the answer are our x, y
and z coordinates respectively.

3 State

The State class is used to represent the states. The only change from ltsgraph is
that this class now uses the Utils::Vect structure, now defined in 3D, in order to
represent the state’s location in the three dimensional coordinate system. The
constructor is changed accordingly.

4 Transition

The Transition class is used to represent transitions. Each transition has a
label and a handle (drawn as a little square). The line drawn to represent
the transition always goes through this handle and the user can click on this
handle and move it to curve the transition. The main changes in the Transition
class, apart from adding the z coordinate to the label positions, focuses on the
coordinates of the handles of the transitions. In both ltsgraph and LTSGraph3D,
when a handle is moved and given a new position, this position is kept by how
it differentiates from its original position. The original position of a handle is
mid-point of the origin and the target states for non-self loop transitions, which
creates a straight line. While in 2D keeping one angle is enough to clarify this
difference, in 3D three angles are needed.
If there is a transition between an origin state O, a target state T and the new
coordinates of the handle are defined by the vector H⃗, the parameters needed
to recalculate H⃗ are as below:

⃗TRA = T⃗ − O⃗
⃗HAN = H⃗ − O⃗

controlα = arctan

(
⃗HANx√

(⃗HANy)2+(⃗HANz)2

)
− arctan

(
⃗TRAx√

(⃗TRAy)2+(⃗TRAz)2

)
controlβ = arctan

(
⃗HANy√

(⃗HANx)2+(⃗HANz)2

)
− arctan

(
⃗TRAy√

(⃗TRAx)2+(⃗TRAz)2

)
controlγ = arctan

(
⃗HANz√

(⃗HANy)2+(⃗HANx)2

)
− arctan

(
⃗TRAz√

(⃗TRAy)2+(⃗TRAx)2

)
controlDistance = | ⃗HAN |

| ⃗TRA|

Where ⃗TRA is the vector that represents the straight line between the origin and
the target states. ⃗HAN is the vector that represents the straight line between
the origin state and the new handle position. controlα, controlβ and controlγ
are the angles that we need to keep and controlDistance is the proportion
needed to calculate where the handle would stand in the direction of ⃗HAN .
These angles are the decompositions of the angle between ⃗TRA and ⃗HAN into
three angles with three planes (y-z, x-z and x-y respectively).
For a self-loop transition the difference of the handle point with respect to the
state is kept in terms of these angles:

4

controlα = arctan

(
⃗HANx√

(⃗HANy)2+(⃗HANz)2

)
controlβ = arctan

(
⃗HANy√

(⃗HANx)2+(⃗HANz)2

)
controlγ = arctan

(
⃗HANz√

(⃗HANy)2+(⃗HANx)2

)
controlDistance = | ⃗HAN |

200

Where ⃗HAN is defined as it is for non-self looping transitions.
The reason the handle position is kept in this way is to guarantee that the
handle moves consistently when the origin or the target states move. In this
way the angle of the curve is preserved.

5 LTSGraph3D

The LTSGraph3D class contains the entry point to the program. Nearly all of
the implementation is the same as ltsgraph. Having access to nearly all the
other classes, the following methods are implemented here.

5.1 LTSGraph3D::moveObject

In LTSGraph3D some of the drawn objects can be moved selecting them with
the left mouse button. These objects can either be a state, a transition handle
or a transition label. The LTSGraph3D::moveObject method moves the selected
object according to the current modeling and viewing transformations, so that
the object always moves the same direction of the mouse movement and by the
same magnitude. This enables moving an object in three dimensions. To do this
we assume that the movement on the screen is the transformed version of the
movement that should have been done internally. Reversing the transformation
on the movement input with Utils::GLUnTransform will give us the internal
movement that is kept. This allows us to apply the proper direction to the
movement. We still have to convert the screen coordinates to the way they are
stored in the Graph class and perform reverse the projection so that objects in
any depth stay under the mouse while moving them. We can do the screen to
storage conversion by reversing the calculations done while they are drawn in
Visualizer::visualize:

rad = radius ∗ pixelSize

rad is equal to the radius used for the states returned by Visualizer::getRadius
multiplied by the pixelSize (returned by the method GLCanvas::getPixelSize).
Pixels are the units used for screen coordinates.

pixelToWorld = 3 ∗ 550/pheight

pixelToWorld is a coefficient for screen to world coordinates conversion found
by trial and error for an object moving in the world y-axis at a constant certain
depth. 550 is the window height in pixels the trials were done, pheight is the
height in pixels of the current window, used to make movement consistent with
any window size and 3 is the constant found through these trials.

5

x′ = x ∗ 2000/(width− rad ∗ 2) ∗ pixelToWorld
y′ = y ∗ 2000/(height− rad ∗ 2) ∗ pixelToWorld
z′ = z ∗ 2000/(depth− rad ∗ 2) ∗ pixelToWorld

x, y and z are the untransformed pixel coordinates, width, height and depth
are the world coordinates of the dimensions of the window, as they are returned
by the method GLCanvas::getSize and 2000 is the constant used for the conver-
sion between world coordinates and storing coordinates in Visualizer::visualize.
x′, y′ and z′ are the new world coordinates yet to be modified to the correct
magnitude.
To apply the correct magnitude, we need the depth of the object we want to
move in world coordinates (where it is drawn). Depth is defined with respect to
the local coordinate system of the graph and is different then the z coordinate
kept in the object if any rotations are done. To do this we translate to the coor-
dinates of the object, just like we were drawing it. At this point we know that
the 14th element of the modeling and viewing matrix (with OpenGL notation),
that occurs after the translation, is the real depth where the object was drawn
in world coordinates. For an object, this value always has to be smaller then
zero because only objects ’inside’ the screen are drawn (in OpenGL, inside the
screen is negative z axis and the user’s side of the screen is positive z axis). Since
projection is directly proportional with the depth, we can directly multiply the
above real depth with the storing coordinates calculated above (x′, y′ and z′).

x′′ = x′ ∗ depth , y′′ = y′ ∗ depth , z′′ = z′ ∗ depth

By using the object’s setters we can directly add these values (x′′, y′′ and z′′)
found to their current coordinates.

5.2 LTSGraph3D::getCanvasMdlvwMtrx

This method returns the current modeling and viewing transformation matrix,
for the classes that can access the LTSGraph3D class but cannot access the
GLCanvas class, using GLCanvas::getMdlvwMtrx.

5.3 LTSGraph3D::getCanvasCamPos

This method returns the current camera position, for the classes that can access
the LTSGraph3D class but cannot access the GLCanvas class, using GLCan-
vas::getCamPos.

6 GLCanvas

As in the tool ltsgraph, canvas operations such as projection and object pick-
ing are all implemented in the GLCanvas class, which is an extension of the
wxGLCanvas class defined in wxWidgets. In initialization depth testing is en-
abled, meaning that the objects that are behind others will not be drawn.

6.1 GLCanvas::display

The perspective projections that are needed to apply the 3D effect are done by
calls to gluPerspective, which is a part of the glu library. The far clipping plane

6

distance is selected so that after any rotations, the whole graph is still visible.
To be able to visualize the graph in any way the user wants, features such as
rotations, panning and zooming are implemented. To implement these features
modeling and viewing transformations are needed. For ease of other calculations
these transformations are implemented such that the camera is always in the
center of the world coordinates and the model is rotated or moved instead of
the camera. Rotations are implemented as the rotations of an arc ball to avoid
problems such as the gimbal lock (which may cause unexpected rotations). An
arc ball rotation is one which always occurs in planes produced by the world
axises (which never change) instead of the planes produced by the local axises
of the model (which change with every new rotation). Since the rotations that
the OpenGL library uses are all done in the local planes, functions to create and
multiply rotation matrices are implemented the Utils namespace. To achieve
an arc ball rotation the method used in this tool is to apply every new rotation
before applying the previous modeling and viewing transformations, which are
represented with a 4× 4 matrix, however implemented as an array of size 16 to
provide compatibility with the OpenGL library. While a rotation tool is being
used, every mouse movement defines a vector. The magnitude of this vector is
the angle to be rotated and the direction is the normal to the axis that is being
rotated around. The z component of this vector is always zero since we do not
have a usable way of mapping mouse movement to third dimension. Giving
these values as inputs to the method Utils::genRotArbAxs, the needed rotation
matrix is generated. After this 4 × 4 matrix is generated it is only a matter
of multiplying this matrix with the previous modeling and viewing matrix by
using Utils::MultGLMatrices:

MV T ′
4×4 = RM4×4 ×MV T4×4

Where RM4×4 is the rotation matrix generated by the formula above and
MV T4×4 is the modeling and viewing transformation matrix kept. Even though
variables with double precision are used in these formulas, some accuracy is al-
ways lost during these operations. These losses result in sheering and stretching
in the graph drawn. Therefore after a rotation, MV T4×4 is normalized by the
method GLCanvas::normalize matrix, so that these errors can be minimized. In
this function OpenGL’s rotation functions are used on a matrix which is initially
an identity matrix to recreate a rotation matrix without sheering and stretching
that is closes to the matrix to be normalized. This matrix can be represented by
N4×4 This normalizing function works by the idea that MV T4×4 stores the unit
vectors for the three axises (local axises of the graph) generated after rotations
in world coordinates. With OpenGL’s notation of matrices (any translations
are ignored):

X⃗ = {MV T0,0,MV T1,0,MV T2,0} , Y⃗ = {MV T0,1,MV T1,1,MV T2,1} ,

Z⃗ = {MV T0,2,MV T1,2,MV T2,2}

Where X⃗, Y⃗ and Z⃗ are these unit vectors in world coordinates. Firstly the unit
vector for the z-axis (Z⃗) is assumed to be in the correct direction. Two rotations

are needed to overlap N4×4’s z-axis with Z⃗. The first rotation is around the
local y-axis of N4×4 and this rotation’s angle is the angle between world z-axis

and Z⃗’s projection on the x-z plane. The second rotation is around the local
x-axis of N4×4 and this rotation angle is the angle between Z⃗ and its projection
on the x-z plane. Calculations are as below:

7

β = arctan
(

MV T0,2

MV T2,2

)
, γ = arctan

(
MV T1,2√

MV T 2
0,2+MV T 2

2,2

)
Where β and γ are respectively the first and the second angles. With two calls
to glRotate in the OpenGL library, the new z-axis is pointing to the correct
direction with minimal stretching or sheering. At this step a second assumption
is made that the projection of the deformed y-axis, represented by its unit vector
Y⃗ , on the local x-y plane is the correct direction for the new y-axis. Projecting
allows us to compute a correct angle, between Y⃗ and the y-axis of N4×4, to
rotate around the local z-axis of N4×4. The normal we use to project is nothing
but the z-axis of N4×4.

⃗Yprojection = Y⃗ − ((Y⃗ . ⃗normal)× ⃗normal)

Where . is the dot product between two vectors and is implemented in Utils
namespace as Utils::dotProd. Utils::angDiff also from the Utils namespace is
used to calculate the angle between ⃗Yprojection and the local y-axis of N4×4.
However, there is an ambiguity in the angle found (since cosine function used
to find the angle difference is a modulo π function). To resolve this ambiguity

the y coordinate of the X⃗ is looked at. If this value is negative the glRotate
function is called with a negative rotation around the local z-axis of N4×4 and
with a positive rotation otherwise. After these rotations the matrix kept within
the current OpenGL context is the fixed rotation matrix that represents all the
rotations done previously. Now we can replace our MV T4×4 with this matrix.
After doing these calculations, panning and zooming effects are fairly easy:

MV T0,3 = −lookX , MV T1,3 = −lookY , MV T2,3 = −lookZ

Where lookX is the panning done in the x-axis, lookY is the panning done in the
y-axis and lookZ is the total zooming done. For a more realistic display, a light
that always comes from the direction of the camera is added however not enabled
yet. This is done before loading the modeling and viewing transformation matrix
to OpenGL so that the light’s direction is not affected by the transformations.
To be able to color the states, a material behavior is also added. After the
matrix is loaded the control is given to Visualizer::visualize to draw the LTS to
the screen. When this function returns, upon the user’s request, a representation
of the local coordinate system of the model can be shown at the left lower corner
of the window in a new viewport. To make it more visible, this coordinate system
is not affected by the panning and zooming effects.

6.2 Mouse Functions

All mouse functions are initiated by the event handler of wxWidgets. Mouse
movement is processed by the method GLCanvas::onMouseMove, only has a
function if one of mouse buttons is clicked. These functions are as below:

• Left Mouse Button
Defined by the GLCanvas::onMouseLftDown, the left mouse button can
have up to two functions, one active when an object is clicked and the
other active otherwise. When not clicking on an object, the left mouse
can either be used for panning, zooming and rotating or this tool can
be completely disabled to prevent unwanted changes in the viewpoint.

8

When clicked on an object either the state’s color is changed with the
active color or the state can be initiated to move as long as the left mouse
button is held, this tool cannot be disabled. These tools are defined by
their identification numbers, defined in the IDS namespace, extended after
the last identification number used by wxWidgets. To check if an object is
clicked or not the type of the method GLCanvas::pickObjects is changed to
boolean from void. To move an object, new mouse coordinates are passed
to LTSGraph3D::moveObject since the depth of the selected object has
to be known to make mouse movement equal to object movement and
GLCanvas class does not have access to the selected objects.

• Right Mouse Button
The right mouse button has two functions. If a state is clicked, that state’s
position is stabilized and it can not be moved by the layout algorithm
implemented, only the user can move it. If empty space is clicked this
button always does a rotation.

• Middle Mouse Button
To increase usability for mouses with a wheel/middle button, zooming
can be done by turning the wheel (GLCanvas::onMouseWhl) and rotation
can be done by clicking the middle button anywhere in the window and
moving the mouse (GLCanvas::onMouseMidDown).

When one of these functions are being used the mouse cursor is changed by the
method GLCanvas::setMouseCursor to a proper cursor for the function, again
defined by the active tools identification number.

6.3 GLCanvas::pickObjects

To pick objects on the screen, the rendering mode is switched to selecting mode.
A picking region is created around the click location. In this mode the ’names’
that are given to an object when they were being drawn are recorded to a buffer
when they are in the picking region defined by the mouse click (called a hit).
With these names the object selected can be defined. If hits are not bigger then
zero, no object is selected. Only one object can be selected at a time. Clicking
on empty space or a new object clears the selection on the previous object. The
selected objects are pointed to by LTSGraph3D class and their boolean selected
check value is changed to true by the Graph class.

6.4 GLCanvas::getCamPos

The GLCanvas::getCamPos method is implemented to be able to get the camera
position if it were thought as the camera being moved instead of the graph.

6.5 GLCanvas::getSize

The GLCanvas::getSize method defines the height and the width in world coor-
dinates just as in the same named method in ltsgraph. The depth is defined as
their arithmetic mean to provide balanced sizes in the environment.

9

6.6 GLCanvas::getMdlvwMtrx

The GLCanvas::getMdlvwMtrx method is implemented to supply the other
classes with the transformations done for numerous purposes.

7 Visualizer

All of the drawings are done in this class as it is in the ltsgraph tool.

7.1 Visualizer::drawStates

The Visualizer::drawStates method initiates the drawing of the objects. For
every state, its out going transitions and self loops are drawn. The rendering
process of the texts are separated since the texts cannot be rendered without
disabling the depth mask (which disables the writing done to the depth buffer
used for depth testing), therefore they should be rendered after everything else
is rendered. Therefore they are taken care of in separate loops. After every
state and transition are drawn by calls to the methods Visualizer::drawState
and Visualizer::drawTransition (Visualizer::drawSelfLoop for self loops) respec-
tively, the texts are rendered using Visualizer::drawTransLabel and Visual-
izer::drawStateText methods. All of these four methods convert the storing
coordinates to world coordinates using the calculations below:

rad = radius ∗ pixelSize x′ = (x/2000) ∗ (width− rad ∗ 2)
y′ = (y/2000) ∗ (height− rad ∗ 2) z′ = (z/2000) ∗ (depth− rad ∗ 2)

rad is equal to the radius used for the states kept in the Visualizer class multi-
plied by the pixelSize returned by the method GLCanvas::getPixelSize. width,
height and depth are the world coordinates of the dimensions of the window,
as they are returned by the method GLCanvas::getSize and 2000 is the con-
stant used for the conversion between world coordinates and storing coordi-
nates. These calculations are necessary for consistent rendering in different
window sizes and different aspect ratios.

7.2 Visualizer::drawState

To draw the states and the selection notifying borders around them, gluSphere
and gluPartialDisk from the glu library are respectively used. To make the
borders visible from any angle, the modeling and viewing transformation matrix
is only applied to the translation part of the ring to find its location in the world
coordinates with the disk always facing the user. After its border is drawn, to
draw the state lighting has to be enabled. The spheres being the only 3D object
that needs lighting, it is only enabled at this part of the code. After two calls
to glPushName make the state selectable by the user, the sphere is drawn after
being translated to its location with the radius rad calculated above. Lighting
is again disabled to that drawings such as transitions are not affected by it.

7.3 Visualizer::drawTransition

Second order Bezier curves using one control point are used to draw the transi-
tions, as they are in ltsgraph. The transition handle (the virtual control point)

10

lies in the mid-point of this one control point and the mid-point of the 2 states
that the transition is tied to. After the transition is drawn using Bezier equa-
tions, if displaying the transition handles is enabled, a white cube with colored
sides (depending on selection) is drawn after using glPushName to make this
handle selectable. To indicate the direction of the transition, small cones are
drawn in the correct location and pointing to the correct direction using Visu-
alizer::drawArrowHead. First we translate to the point where the target sphere
was drawn. Since we know that Visualizer::drawArrowHead draws the cones
pointing outwards from the current local z-axis, to make the cone point to the
direction we want, we have to overlap this direction with the positive z-axis.
We want the direction of the cone lying from the real control point described
above to the center of the sphere it is heading to. We can realize this with two
rotations using glRotate:

β = arctan
(

xTo−xControl

zTo−zControl

)
, γ = arctan

(
yTo−yControl√

(xTo−xControl)2+(zTo−zControl)2

)
The first rotation is around the local y-axis using the angle β. The second
rotation is around the local x-axis using the angle −γ. After these two rotations,
by translating 2 × rad in the local minus z-axis, we draw the cone pointing to
the sphere instead of inside it.

7.4 Visualizer::drawSelfLoop

Third order Bezier curves with 2 control points are used to curve the transition
back to its looping state, as it is in the ltsgraph tool. Since these transitions have
only one handle each, the self loops existing plane cannot be rotated around the
axis created by the state and the one handle, without moving the one handle.
Therefore, for simplicity, the two control points always stand in the same depth
(in the local coordinate system of the graph). Instead of using the angle between
the axis that goes through the transition’s from state and the handle and the
x axis as in ltsgraph, here the angle between the axis that goes through the
transition’s from state and the handle and the x-y plane is used to calculate
the x and y coordinates of the two control points. Notice that the sinus of
both angles gives the y coordinate of the handle. To keep the distances of the
control points from the looping state the same while adding the z coordinate,
we calculate the z coordinate in a similar way the x and y coordinates of the
control points are calculated:

zFactor = (4 ∗ (zV irtual − zState))/(3 ∗ (sin(γ)))zControl =
zState+ zFactor ∗ sin(γ)

Where γ is the angle between the axis that goes through the transition’s from
state and the handle and the x-y plane, returned by Transition::getControlGamma.
zState is the z coordinate of the looping state, zV irtual is the z coordinate of
the handle. zControl is the depth of both control points. This calculation is
only done when |sin(γ)| is greater then 0.01, since otherwise the calculation
above would be undefined. If it is smaller then 0.01, this means the difference of
angle is not really great and we can directly take the value of the z coordinate
as same as the z coordinate of the looping state.

11

7.5 Visualizer::drawArrowHead

Assuming the proper translations and rotations are done, the Visualizer::drawArrowHead
function draws a cone (a cylinder with top radius equal to zero) with the input
height and base radius equal to the one fifth of this height. The cones are drawn
with the gluCylinder function in the glu library. The drawn cone points towards
the local positive z-axis.

8 Springlayout

Like in ltsgraph, when enabled the Springlayout class tries to find an optimized,
stable layout using a force-directed placement where the goal is to find an equi-
librium state for every state, where the sum of the forces applied on it is 0.
Vertexes function as electrically same charged particles which repel each other
more as they get closer. Edges function as springs that exerts force on the ver-
texes connected to them depending on their current length and their zero-energy
length. If the length of an edge is smaller then its zero-energy length, it exerts
repulsive force and exerts attractive force otherwise.

8.1 Springlayout::layoutGraph

The algorithm works exactly the same way in three dimensions as it works in
two dimensions. However the walls that keep the graph limited to the window
that are implemented in ltsgraph are removed here, since we can move, zoom or
rotate to anywhere in the viewing space. We have to add the third coordinate
and integrate the required force formulas into 3D. The formulas for the electric
and spring forces are given below:

F⃗ electric(u, v) =
e

d⃗(u, v)2

F⃗ spring(u, v) = s ∗ log

(
d⃗(v, u)

l

)

Where F⃗ electric(u, v) is the repulsion force exerted to a vertex v by another

vertex u. F⃗ spring(u, v) is the force exerted to a vertex v by a spring that is

connected to the vertex u. d⃗(u, v) is the distance between vertexes u and v,e
is the equal charge coefficient of all vertexes, s is the equal stiffness coefficient
and l is the equal zero-energy length of all edges. We add the z component of
the gravitational force according to the imaginary screen depth defined in the
implementation:

F gravitation
x (v) = (−2) ∗ xv/2000

F gravitation
y (v) = (−2) ∗ yv/2000

F gravitation
z (v) = (−2) ∗ zv/2000

We can find all three components of the total forces applied on a vertex v as
below:

12

F total
x (v) =

∑
u∈V

(
∥F⃗ electric(u, v)∥ ∗ xv − xu

∥d⃗(u, v)∥

)
+

∑
(u,v)∈E

(
∥F⃗ spring(u, v)∥ ∗ xv − xu

∥d⃗(u, v)∥

)
+ F gravitation

x (v)

F total
y (v) =

∑
u∈V

(
∥F⃗ electric(u, v)∥ ∗ yv − yu

∥d⃗(u, v)∥

)
+

∑
(u,v)∈E

(
∥F⃗ spring(u, v)∥ ∗ yv − yu

∥d⃗(u, v)∥

)
+ F gravitation

y (v)

F total
z (v) =

∑
u∈V

(
∥F⃗ electric(u, v)∥ ∗ zv − zu

∥d⃗(u, v)∥

)
+

∑
(u,v)∈E

(
∥F⃗ spring(u, v)∥ ∗ zv − zu

∥d⃗(u, v)∥

)
+ F gravitation

z (v)

The mass of the vertex can be thought as one and the acceleration of that vertex
will be equal to the total sum of the forces on the vertex; where the velocity of
the vertex is not conserved and will be zero at the beginning of each iteration.
Therefore, the new coordinate of a vertex is found directly by adding the x-
component of the current sum of the forces to the current x coordinate of the
vertex, adding the y-component of the current force to the current y coordinate
of the vertex and adding the z-component of the current force to the current z
coordinate of the vertex. The new coordinates of the vertex v are as below:

(x
′

v, y
′

v, z
′

v) = (xv + F total
x (v), yv + F total

y (v), zv + F total
z (v))

13

