Process Library Implementation Notes

Wieger Wesselink

April 26, 2024

1 Process Library Implementation Notes

1.1 Processes

Process expressions in mCRL2 are expressions built according to the following syntax:

expression	C++ equivalent	ATerm grammar
a(e)	$\operatorname{action}(a,e)$	Action
P(e)	$\operatorname{process}(P,e)$	Process
P(d := e)	$\operatorname{process_assignment}(P, d := e)$	ProcessAssignment
δ	delta()	Delta
au	au()	Tau
$\sum_d x$	$\operatorname{sum}(d,x)$	Sum
$\partial^d_B(x)$	block(B,x)	Block
$\tau_B(x)$	hide(B,x)	Hide
$\rho_{R}(x)$	rename(R,x)	Rename
$\Gamma_C(x)$	$\operatorname{comm}(C, x)$	Comm
$\nabla_V(x)$	$\operatorname{allow}(V,x)$	Allow
$x \mid y$	$\operatorname{sync}(x,y)$	Sync
x ${}^{c} t$	$\operatorname{at_time}(x,t)$	AtTime
$x \cdot y$	$\operatorname{seq}(x,y)$	Seq
$c \to x$	$ ext{if_then}(c,x)$	IfThen
$c \to x \diamond y$	$if_{then_{else}(c,x,y)}$	IfThenElse
$x \ll y$	$\operatorname{binit}(x,y)$	BInit
$x \parallel y$	$\mathrm{merge}(x,y)$	Merge
$x \parallel y$	$\mathrm{lmerge}(x,y)$	LMerge
x + y	choice(x,y)	Choice

where the types of the symbols are as follows:

- a, b strings (action names)
- P a process identifier
- e a sequence of data expressions
- d a sequence of data variables
- B a set of strings (action names)
- R a sequence of rename expressions
- C a sequence of communication expressions
- V a sequence of multi actions
- t a data expression of type real
- x, y process expressions
- c a data expression of type bool

A rename expression is of the form $a \to b$, with a and b action names. A multi action is of the form $a_1 \mid \cdots \mid a_n$, with a_i actions. A communication expression is of the form $b_1 \mid \cdots \mid b_n \to b$, with b and b_i action names.

1.1.1 Restrictions

A multi action is a multi set of actions. The left hand sides of the communication expressions in C must be unique. Also the left hand sides of the rename expressions in R must be unique.

1.1.2 Linear process expressions

Linear process expressions are a subset of process expressions satisfying the following grammar:

F F F F F F	
<linear expression="" process=""></linear>	<pre>::= choice(<linear expression="" process="">, <linear expression="" process="">)</linear></linear></pre>
<summand></summand>	<pre>::= sum(<variables>, <alternative>) <conditional action="" prefix=""> <conditional deadlock=""></conditional></conditional></alternative></variables></pre>
<conditional action="" prefix=""></conditional>	<pre>::= if_then(<condition>, <action prefix="">)</action></condition></pre>
<action prefix=""></action>	<pre>::= seq(<timed multiaction="">, <process reference="">)</process></timed></pre>
<timed multiaction=""></timed>	<pre>::= at_time(<multiaction>, <time stamp="">)</time></multiaction></pre>
<multiaction></multiaction>	<pre>::= tau()</pre>
<conditional deadlock=""></conditional>	<pre>::= if_then(<condition>, <timed deadlock="">)</timed></condition></pre>
<timed deadlock=""></timed>	<pre>::= delta() at_time(delta(), <time stamp="">)</time></pre>
<process reference=""></process>	::= process(<process identifier="">, <data expressions="">) process_assignment(<process identifier="">, <data assignments="">)</data></process></data></process>

1.2 Guarded process expressions

We define the predicate is_guarded for process expressions as follows: $is_guarded(p) = is_guarded(p, \emptyset)$

 $is_quarded(a(e), W)$ = true $is_{guarded}(\delta, W)$ = true $is_{-}guarded(\tau, W)$ true= if $P \in W$ falseſ $is_guarded(p, W \cup \{P\})$ if $P \notin W$ $is_quarded(P(e), W)$ =where P(d) = p is the equation corresponding to P(e) $is_guarded(p+q,W)$ $is_guarded(p, W) \land is_guarded(q, W)$ = $is_guarded(p \cdot q, W)$ $is_guarded(p, W)$ = $is_guarded(c \rightarrow p, W)$ $is_guarded(p, W)$ = $is_guarded(p, W) \land is_guarded(q, W)$ $is_quarded(c \rightarrow p \diamond q, W)$ = $is_{-guarded}(\Sigma_{d:D} p, W)$ $is_guarded(p, W)$ = $is_guarded(p \circ t, W)$ = $is_quarded(p, W)$ $is_guarded(p \ll q, W)$ $is_guarded(p, W)$ = $is_guarded(p \parallel q, W)$ $is_guarded(p, W) \land is_guarded(q, W)$ = $is_guarded(p \parallel q, W)$ $is_guarded(p, W)$ = $is_quarded(p \mid q, W)$ $is_quarded(p, W) \land is_quarded(q, W)$ = $is_quarded(p, W)$ $is_guarded(\rho_B(p), W)$ = $is_guarded(\partial_B(p), W)$ $is_guarded(p, W)$ = $is_{guarded}(\tau_{I}(p), W)$ $is_guarded(p, W)$ = $is_{-guarded}(\Gamma_C(p), W)$ $is_guarded(p, W)$ = $is_guarded(\nabla_V(p), W)$ $is_guarded(p, W)$ =

N.B. This specification assumes that process names are unique. In mCRL2 process names can be overloaded, therefore in the implementation W contains *process identifiers* (i.e. both the process name and the sorts of the arguments) instead of process names.

1.3 Alphabet reduction

Alphabet reduction is a preprocessing step for linearization. It is a transformation on process expressions that preserves branching bisimulation.

1.3.1 Notations

In this text action names are represented using a, b, \ldots and multi action names using α, β, \ldots So in general we have $\alpha = a_1 \mid \ldots \mid a_n$. In alphabet reduction data parameters play a minor role, therefore we choose a notation in which data parameters are omitted. We use the abbreviation $\overline{a} = a(e_1, \ldots, e_n)$ to denote an action, and $\overline{\alpha} = \overline{a_1} \mid \ldots \mid \overline{a_n}$ to denote a multi action, where e_1, \ldots, e_n are data expressions.Note that a multi action is a multiset (or bag) of actions and a multi action name is a multiset of names. We write $\alpha\beta$ as shorthand for $\alpha \cup \beta$ and $a\beta$ for $\{a\} \cup \beta$. Sets of multi action names are represented using A, A_1, A_2, \ldots A communication C maps multi action names to action names, and is denoted as $\{\alpha_1 \to a_1, \ldots, \alpha_n \to a_n\}$. A renaming R is a substitution on action names, and is denoted as $R = \{a_1 \to b_1, \ldots, a_n \to b_n\}$. A block set B is a set of action names. A hide set I is a set of action names.

1.3.2 Definitions

We define multi actions $\overline{\alpha}$ using the following grammar:

$$\overline{\alpha} := \overline{a} \mid \overline{\alpha} \mid \overline{a},$$

where \overline{a} is an action, and where + is used to distinguish alternatives.

We define pCRL terms p using the following grammar:

$$p ::= \overline{a} + P + \delta + \tau + p + p + p \cdot p + c \rightarrow p + c \rightarrow p \diamond p + \Sigma_{d:D} p + p \diamond t + p \ll p,$$

and parallel mCRL terms q using the following grammar:

$$q ::= p + q \parallel q + q \parallel q + q \mid q + \rho_R(q) + \partial_B(q) + \tau_I(q) + \Gamma_C(q) + \nabla_V(q).$$

Remark 1 Note that there is an unfortunate overload of the |-operator in both multi actions and process expressions. This has consequences for the implementation, since it there is no clean distinction between parallel and non-parallel operators.

Remark 2 The mCRL2 language also has a construct $P(d_{i_1} = e_{i_1}, \ldots, d_{i_k} = e_{i_k})$, but this is just a shorthand notation. Therefore we will ignore it in this text.

1.3.3 Alphabet operations

Let A, A_1 and A_2 be sets of multi action names. Then we define

$$\begin{array}{rcl} A^{\subseteq} & = & \{\alpha \mid \exists \beta. \alpha\beta \in A\} \\ A_1A_2 & = & \{\alpha\beta \mid \alpha \in A_1 \text{ and } \beta \in A_2\} \\ A_1 \nleftrightarrow A_2 & = & \{\alpha \mid \exists \beta. \alpha\beta \in A_1 \text{ and } \beta \in A_2\} \end{array}$$

Note that β can take the value τ in the definition of $A_1 \leftarrow A_2$, which implies $A_1 \subset A_1 \leftarrow A_2$. The set $A \subseteq$ has an exponential size, so whenever possible it should not be computed explicitly.

Let C be a communication set, then we define

$$C(A) = \bigcup_{\alpha \in A} \operatorname{COMM}(C, \alpha)$$

$$C^{-1}(A) = \bigcup_{\alpha \in A} \operatorname{COMMINVERSE}(C, \alpha)$$

$$filter_{\nabla}(C, A) = \{\gamma \to c \in C \mid \exists_{\alpha \in A}. \gamma \subset \alpha\}$$

where COMM and COMMINVERSE are defined using pseudo code as follows:

$$COMM(C, \alpha)$$

$$R := \{\alpha\}$$
for $\gamma \to c \in C$ do
if $\exists \beta.\alpha = \beta \gamma$ then $R := R \cup COMM(C, \beta c)$
return R

$$COMMINVERSE(C, \alpha_1, \alpha_2)$$

$$R := \{\alpha, \alpha_2\}$$

$$\begin{array}{l} R := \{\alpha_1 \alpha_2\} \\ \text{for } \gamma \to c \in C \text{ do} \\ \quad \text{if } \exists \beta. \alpha_1 = \beta c \text{ then } R := R \cup \text{COMMINVERSE}(C, \beta, \alpha_2 \gamma) \\ \text{return } R \end{array}$$

Note that $C^{-1}(\alpha) = \text{COMMINVERSE}(C, \alpha, \tau)$.

Let R be a rename set, then we define

Let I be a hide set, then we define

$$\begin{aligned} \tau_I(A) &= \{\beta \mid \exists_{\alpha \in A, \gamma \in I^*} . \alpha = \beta \gamma \land \beta \cap I = \emptyset \} \\ \tau_I^{-1}(A) &= \partial_I(A) I^* \end{aligned}$$

Let B be a block set, then we define

$$\partial_B(A) = \{ \alpha \in A \mid \alpha \cap B = \emptyset \}$$

We define a mapping *act* that extracts the individual action names of a set of multi action names:

$$act (a_1 | \dots | a_n) = \{a_1 | \dots | a_n\}$$
$$act (A) = \bigcup_{\alpha \in A} act (\alpha)$$

1.3.4 The mapping α

We define the mapping α as follows. The value $\alpha(p, \emptyset)$ is an over approximation of the alphabet of process expression p. $(\overline{z} W)$ (م)

Example 1

If $C = \{a \mid b \to c\}$, then $\alpha(\Gamma_C(a(1) \mid b(2))) = \{a, b, c, a \mid b\}$. Note that the action c does not occur in the transition system of this process expression.

Example 2 In the computation of $\{a_1, a_2, \ldots, a_{20}\} \cap \alpha$ $(a_1 \parallel a_2 \parallel \ldots \parallel a_{20})$ the above mentioned optimization is really needed.

1.3.5 Computation of the alphabet

When computing $A \cap \alpha(p, W)$ for some multi action name set A, it may be beneficial to apply an optimization. This is done to keep intermediate expressions small. We introduce $\alpha(p, W, A) = A \cap \alpha(p, W)$, and define it as follows:

$\alpha(\overline{a},W\!,A)$	=	$\begin{cases} \{a\} & \text{if } a \in A \\ \emptyset & \text{if } a \notin A \end{cases}$
$\alpha(P, W, A)$	=	$\begin{cases} \emptyset & \text{if } P \in W \\ \alpha(p, W \cup \{P\}, A) & \text{if } P \notin W, \end{cases}$
		where $P = p$ is the equation of P
$\alpha(p+q, W, A)$	=	$lpha(p,W,A)\cuplpha(q,W,A)$
$\alpha(p \cdot q, W, A)$	=	$lpha(p,W,A)\cuplpha(q,W,A)$
$\alpha(c \to p, W, A)$	=	lpha(p,W,A)
$\alpha(c \to p \diamond q, W, A)$	=	$lpha(p,W,A)\cuplpha(q,W,A)$
$\alpha(\Sigma_{d:D}p, W, A)$	=	lpha(p,W,A)
$lpha(p \circ t, W, A)$	=	lpha(p,W,A)
$\alpha(p \ll q, W, A)$	=	$lpha(p,W,A)\cuplpha(q,W,A)$
$\alpha(p \parallel q, W, A)$	=	$\alpha(p, W, A) \cup \alpha(q, W, A) \cup \alpha(p, W, A^{\subseteq}) \alpha(q, W, A^{\subseteq})$
$\alpha(p \mathbin{ \! \! } q, W, A)$	=	$\alpha(p, W, A) \cup \alpha(q, W, A) \cup \alpha(p, W, A^{\subseteq}) \alpha(q, W, A^{\subseteq})$
$\alpha(p \mid q, W, A)$	=	$\alpha(p, W, A^{\subseteq})\alpha(q, W, A^{\subseteq})$

1.3.6 More efficient computation of the alphabet

The computation of $\alpha(p, W, A)$ can be done more efficiently. We define the function proc(p, W) as follows:

$proc(\overline{a}, W)$	=	Ø
proc(P, W)		$\begin{cases} \emptyset & \text{if } P \in W \\ \{P\} \cup proc(p, W) & \text{if } P \notin W \end{cases}$
proc(p+q,W)	=	$proc(p,W) \cup proc(q,W)$
$proc(p \cdot q, W)$	=	$proc(p,W) \cup proc(q,W)$
$proc(c \rightarrow p, W)$	=	proc(p, W)
$proc(c \to p \diamond q, W)$	=	$proc(p,W) \cup proc(q,W)$
$proc(\Sigma_{d:D}p, W)$	=	proc(p, W)
$proc(p \circ t, W)$	=	proc(p, W)

Using this function we can change the computation of $\alpha(p, W, A)$ at three places:

$$\begin{array}{lll} \alpha(p+q,W,A) &=& \alpha(p,W,A) \cup \alpha(q,W \cup proc(p,W),A) \\ \alpha(p \cdot q,W,A) &=& \alpha(p,W,A) \cup \alpha(q,W \cup proc(p,W),A) \\ \alpha(c \to p \diamond q,W,A) &=& \alpha(p,W,A) \cup \alpha(q,W \cup proc(p,W),A) \end{array}$$

Note that the value proc(p, W) can be computed on the fly during the computation of $\alpha(p, W, A)$.

1.3.7 Bounded alphabet

In practice one often wants to compute $\alpha(p, A) = \alpha(\nabla_A(p))$. This can be computed more efficiently as follows:

$$\begin{split} &\alpha(\overline{a}, A) &= \begin{cases} \{a\} & \text{if } a \in A \\ \emptyset & \text{if } a \notin A \end{cases} \\ &\alpha(P, A) &= \alpha(p, A), \text{ where } P = p \text{ is the equation of } P \\ &\alpha(p+q, A) &= \alpha(p, A) \cup \alpha(q, A) \\ &\alpha(p \cdot q, A) &= \alpha(p, A) \cup \alpha(q, A) \\ &\alpha(c \to p, A) &= \alpha(p, A) \\ &\alpha(c \to p \diamond q, A) &= \alpha(p, A) \\ &\alpha(\Sigma_{d:D}p, A) &= \alpha(p, A) \\ &\alpha(p \leqslant q, A) &= \alpha(p, A) \\ &\alpha(p \leqslant q, A) &= \alpha(p, A) \cup \alpha(q, A) \\ &\alpha(p \parallel q, A) &= \alpha(p, A) \cup \alpha(q, A) \cup \alpha(p, A^{\subseteq})\alpha(q, A \leftrightarrow \alpha(p, A^{\subseteq})) \\ &\alpha(p \parallel q, A) &= \alpha(p, A) \cup \alpha(q, A) \cup \alpha(p, A^{\subseteq})\alpha(q, A \leftrightarrow \alpha(p, A^{\subseteq})) \\ &\alpha(p \parallel q, A) &= \alpha(p, A^{\subseteq})\alpha(q, A \leftarrow \alpha(p, A^{\subseteq})) \\ &\alpha(\rho_R(p), A) &= \alpha(p, \partial_B(A)) \\ &\alpha(\tau_I(p), A) &= \tau_I(\alpha(p, \tau_I^{-1}(A))) \\ &\alpha(\nabla_V(p), A) &= \alpha(p, A \cap V) \end{split}$$

1.3.8 The mappings push, $push_{\nabla}$ and $push_{\partial}$

We define mappings push, $push_{\nabla}$ and $push_{\partial}$ such that push(p) is bisimulation equivalent to p, $push_{\nabla}(A, p)$ is bisimulation equivalent to $\nabla_A(p)$, and $push_{\partial}(B, p)$ is bisimulation equivalent to $\partial_B(p)$. The goal of these mappings is to push allow and block expressions deeply inside process expressions. It is important to know that an allow set A in the expression $\nabla_A(p)$ implicitly contains the empty multi action τ . Let $\mathcal{E} = \{P_1(d) = p_1, \ldots, P_n(d) = p_n\}$ be a sequence of process equations.

push(p)	=	p if p is a pCRL expression
$push(p \parallel q)$	=	$push\left(p ight)\parallel push\left(q ight)$
$push(p \mathbin{[\![} q)$	=	$\Gamma $ $(\Gamma) \square \Gamma $ (1)
$push(p \mid q)$	=	$push\left(p ight)\mid push\left(q ight)$
$push(\rho_R(p))$		$ \rho_{R}(push\left(p ight)) $
$push(\partial_B(p))$	=	$push_{\partial}(B,p)$
$push(\tau_I(p))$	=	$ au_{I}(push\left(p ight))$
$push(\Gamma_C(p))$	=	$\Gamma_{C}\left(push\left(p ight) ight)$
$push(\nabla_V(p))$	=	$push_{\nabla}(V,p)$

We assume that $P_{A,e}^{\nabla}$ is a unique name for every $P \in \{P_1, \ldots, P_n\}$, multi action name set A and sequence of data expressions e.

$push_{\nabla}\left(A,\overline{a}\right)$	=	$\begin{cases} \overline{a} & \text{if } N(\overline{a}) \in A \\ \delta & \text{otherwise} \end{cases}$
$push_{\nabla}\left(A,P\left(e\right)\right)$	=	$P_A^{\nabla}(e)$, where $P(d) = p$ is the equation of P , and where $P_A^{\nabla}(d) = push_{\nabla}(A, p)$ is a new equation
$push_{\nabla}\left(A,\delta\right)$	=	δ
$push_{\nabla}\left(A,\tau\right)$	=	au
$push_{\nabla}\left(A,p+q\right)$	=	$ abla_A(p+q)$
$push_{\nabla}\left(A, p \cdot q\right)$		$ abla_A(p\cdot q)$
$push_{\nabla}\left(A,c \to p\right)$	=	$ abla_A \left(c \to p ight)$
$push_{\nabla}\left(A,c \to p \diamond q\right)$	=	$\nabla_A \left(c \to p \diamond q \right)$
$push_{\nabla}\left(A, \Sigma_{d:D}p\right)$		$ abla_A \left(\Sigma_{d:D} p \right)$
$push_{\nabla}\left(A,p\circ t ight)$	=	$ abla_A\left(p\circ t ight)$
$push_{\nabla}\left(A,p\ll q\right)$	=	$\nabla_A \left(p \ll q \right)$
$push_{\nabla}(A,p\parallel q)$	=	$\nabla_{A}(A, p' \parallel q') \text{ where } \begin{cases} p' = push_{\nabla}(A^{\subseteq}, p) \\ q' = push_{\nabla}(A \leftarrow \alpha(p'), q) \end{cases}$
$push_{\nabla}(A,p \mathbin{\ \!\! } q)$	=	$ \begin{split} \nabla_{A}(A,p' \parallel q') & \text{where} \begin{cases} p' = push_{\nabla}(A^{\subseteq},p) \\ q' = push_{\nabla}(A \leftrightarrow \alpha(p'),q) \end{cases} \\ \nabla_{A}(A,p' \parallel q') & \text{where} \begin{cases} p' = push_{\nabla}(A \leftarrow \alpha(p'),q) \\ q' = push_{\nabla}(A \leftarrow \alpha(p'),q) \end{cases} \\ \nabla_{A}(A,p' \mid q') & \text{where} \begin{cases} p' = push_{\nabla}(A \leftarrow \alpha(p'),q) \\ q' = push_{\nabla}(A \leftarrow \alpha(p'),q) \end{cases} \end{split} $
$push_{\nabla}(A,p\mid q)$	=	$\nabla_{A}(A, p' \mid q') \text{ where} \begin{cases} p' = push_{\nabla}(A \subseteq, p) \\ q' = push_{\nabla}(A \leftarrow \alpha(p'), q) \end{cases}$
$push_{\nabla}(A, \rho_R(p))$	=	$\rho_R(p')$ where $p' = push_{\nabla}(R^{-1}(A), p)$
$push_{\nabla}(A,\partial_B(p))$	=	$push_{\nabla}(\partial_B(A), p)$
$push_{\nabla}(A, \tau_I(p))$	=	$\tau_I(p')$ where $p' = push_{\nabla}(\tau_I^{-1}(A), p)$
$push_{\nabla}(A,\Gamma_C(p))$	=	allow $(A, \Gamma_C(p'))$ where $p' = push_{\nabla}(C^{-1}(A), p)$
$push_{\nabla}(A, \nabla_V(p))$	=	$push_{\nabla}(A \cap V, p),$

Optimizations During the computation of $push_{\nabla}$ the following optimizations are applied in the right hand side of each equation:

$$\begin{aligned}
\nabla_A(p) &= \begin{cases} p & \text{if } (A \cup \{\tau\}) \cap \alpha(p) = \alpha(p) \\ \nabla_{A \cap \alpha(p)}(p) & \text{otherwise} \end{cases} \\
\nabla_{\emptyset}(p) &= \begin{cases} \tau & \text{if } p = \tau \\ \delta & \text{otherwise} \end{cases} \\
\Gamma_C(p) &= \Gamma_{filter_{\nabla}(C,\alpha(p))}(p) \\
\delta \mid \delta &= \delta \\
\delta \parallel \delta &= \delta
\end{aligned}$$

For non pCRL expression the alphabet $\alpha(p)$ is computed on the fly during the computation of $push_{\nabla}(A, p)$.

Example 1 Let $P = (a+b) \cdot P$. Then $push_{\nabla}(\{a\}, P, \emptyset) = P'$, with $P' = push_{\nabla}(\{a\}, (a+b) \cdot P, \{(P, \{a\}, P')\}) = push_{\nabla}(\{a\}, (a+b), \{(P, \{a\}, P')\}) \cdot push_{\nabla}(\{a\}, P, \{(P, \{a\}, P')\}) = \cdots = a \cdot P'$.

 $\begin{array}{ll} \textbf{Example 2} \quad \text{Let } P = a \cdot \nabla_{\{a\}}(P). \text{ Then } push_{\nabla}\left(\{a\}, P, \emptyset\right) = P', \text{ with } P' = push_{\nabla}\left(\{a\}, a \cdot \nabla_{\{a\}}(P), \{(P, \{a\}, P')\}\right) = push_{\nabla}\left(\{a\}, a, \{(P, \{a\}, P')\}\right) \cdot push_{\nabla}\left(\{a\}, \nabla_{\{a\}}(P), \{(P, \{a\}, P')\}\right) = \cdots = a \cdot P'. \\ \text{ We assume that } P^{\partial}_{A, e} \text{ is a unique name for every } P \in \{P_1, \ldots, P_n\}, \text{ multi action name set } A \text{ and sequence} \end{array}$

of data expressions e.

$$\begin{aligned} push_{\partial}(B,\overline{a}) &= \begin{cases} \overline{a} & \text{if } N(\overline{a}) \cap B = \emptyset \\ \delta & \text{otherwise} \\ P_{B,e}^{\partial}(e) \\ push_{\partial}(B,P(e)) &= & \text{where } P(d) = p \text{ is the equation of } P, \text{ and} \\ & \text{where } P_{B,e}^{\partial}(d) = push_{\partial}(B,p) \text{ is a new equation} \\ push_{\partial}(B,\delta) &= & \delta \\ push_{\partial}(B,\tau) &= & \tau \\ push_{\partial}(B,p+q) &= & push_{\partial}(B,p) + push_{\partial}(B,q) \\ push_{\partial}(B,c \to p) &= & c \to push_{\partial}(B,p) \\ push_{\partial}(B,c \to p) &= & c \to push_{\partial}(B,p) \\ push_{\partial}(B,c \to p \circ q) &= & c \to push_{\partial}(B,p) \\ push_{\partial}(B,p < t) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p < t) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p < t) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p = q) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p = q) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p < q) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p < q) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p = q) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p = q) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p = q) &= & push_{\partial}(B,p) \\ push_{\partial}(B,p_{R}(p)) &= & push_{\partial}(B,p) \\ push_{\partial}(B,\rho_{R}(p)) &= & push_{\partial}(B \cup B_{1},p) \\ push_{\partial}(B,\tau_{I}(p)) &= & \tau_{I}(push_{\partial}(B \setminus I,p)) \\ push_{\partial}(B,\nabla_{V}(p)) &= & push_{\partial}(B,A,p,\emptyset), \end{aligned}$$

where

$$\mathsf{block}(B,p) = \begin{cases} p & \text{if } B = \emptyset \\ \partial_B(p) & \text{otherwise} \end{cases}$$

Example 3 The presence of $R^{-1}(\partial_B(A))$ instead of just $R^{-1}(A)$ in the right hand side of the rename operator is explained by the example $push_{\nabla}(\{b\}, \rho_{\{b\to c\}}b)$. We see that $\rho_{\{b\to c\}}push_{\nabla}(R^{-1}(A), p) = \rho_{\{b\to c\}}push_{\nabla}(\{b\}, b) = \rho_{\{b\to c\}}b = c$, which is clearly the wrong answer.

1.3.9 Allow sets

There are two rules in the definition of $push_{\nabla}$ where the allow set can/should not be computed explicitly. The computation of $push_{\nabla}(A, p \parallel q)$ involves computation of $push_{\nabla}(p, A^{\subseteq})$. We want to avoid the computation of A^{\subseteq} , since it can become very large. The computation of $push_{\nabla}(A, \tau_I(p))$ involves computation of $push_{\nabla}(p, \tau_I^{-1}(A))$. The set $\tau_I^{-1}(A) = AI^*$ is infinite. In the implementation we use allow sets of the form $A^{\subseteq}I^*$, where A is a set of multi action names and

In the implementation we use allow sets of the form $A \subseteq I^*$, where A is a set of multi action names and I is a set of action names. The \subseteq is optional and I may be empty. Such an allow set is stored as two sets A and I, together with an attribute that tells if \subseteq is applicable. We need to show that allow sets are closed

under the operations in $push_{\nabla}$.

where we used the following properties:

Note that in case of the communication we only have an inclusion relation instead of equality. This is done to stay within the format $A^{\subseteq}I^*$. As a consequence the implementation uses an over-approximation of $C^{-1}(A^{\subseteq}I^*)$ and $C^{-1}(AI^*)$. Furthermore note that the property $R^{-1}(A^{\subseteq}) = R^{-1}(A)^{\subseteq}$ does not hold. A counter example is $R = \{b \to a\}$ and $A = \{a, b \mid c\}$. In that case we have $R^{-1}(A^{\subseteq}) = \{a, b, c\}^{\subseteq}$ and $R^{-1}(A)^{\subseteq} = \{a, b\}^{\subseteq}$. Another property that was initially assumed, but that does not hold is $(AI^*) \leftarrow A_1 = (A \leftarrow \tau_I(A_1))I^*$.

1.4 Optimization for $push_{\nabla}$

In some cases the $push_{\nabla}$ operator produces expressions that are too large. This section proposes an optimization for the case $push_{\nabla}(A, \Gamma_C(p))$ that can help to prevent this problem for certain practical cases.

$$push_{\nabla}(A,\Gamma_{C}(p)) = \begin{cases} \text{allow}(A,\Gamma_{C\setminus C'}(push_{\nabla\Gamma}(A',C',p))) & \text{if } C \neq C' \\ push_{\nabla\Gamma}(A,C,p)) & \text{otherwise,} \end{cases}$$

with $C' = \{\beta \to b \in C \mid b \notin \bigcup_{\beta' \to b' \in C} \beta'\}$ and $A' = ((C \setminus C')(A))^{\subseteq}$ and

$$push_{\nabla\Gamma}(A, C, p \parallel q) = \text{allow}\left(A, \Gamma_{C}\left(\text{allow}\left(C^{-1}(A), p' \parallel q'\right)\right)\right) \text{ where} \begin{cases} p' = push_{\nabla\Gamma}(A', C, p) \\ q' = push_{\nabla\Gamma}(A', C, q) \\ A' = C^{-1}(A) \subseteq \backslash (C^{-1}(A) \setminus A) \\ A'' = (C^{-1}(A) \leftarrow \alpha(p')) \backslash (C^{-1}(A) \setminus A) \\ p' = push_{\nabla\Gamma}(A', C, p) \\ q' = push_{\nabla\Gamma}(A', C, p) \\ q' = push_{\nabla\Gamma}(A', C, q) \\ A'' = (C^{-1}(A) \subseteq \backslash (C^{-1}(A) \setminus A) \\ A'' = (C^{-1}(A) \leftarrow \alpha(p')) \backslash (C^{-1}(A) \setminus A) \\ A'' = (C^{-1}(A) \leftarrow \alpha(p')) \backslash (C^{-1}(A) \setminus A) \\ p' = push_{\nabla\Gamma}(A', C, q) \\ A'' = (C^{-1}(A) \leftarrow \alpha(p')) \backslash (C^{-1}(A) \setminus A) \\ p' = push_{\nabla\Gamma}(A', C, p) \\ q' = push_{\nabla\Gamma}(A', C, p) \\ q' = push_{\nabla\Gamma}(A', C, q) \\ A'' = (C^{-1}(A) \leftarrow \alpha(p')) \backslash (C^{-1}(A) \setminus A) \\ A'' = (C^{-1}(A) \subseteq \backslash (C^{-1}(A) \setminus A) \\ A'' = (C^{-1}(A) \subseteq \backslash (C^{-1}(A) \setminus A) \\ A'' = (C^{-1}(A) \subseteq \backslash (C^{-1}(A) \setminus A) \\ A'' = (C^{-1}(A) \leftarrow \alpha(p')) \backslash (C^{-1}(A) \setminus A) \\ a'' = (C^{-1}(A) \leftarrow \alpha(p')) \backslash (C^{-1}(A) \setminus A) \end{cases}$$

 $push_{\nabla\Gamma}(A, C, \nabla_V(p)) = push_{\nabla\Gamma}(A \cap V, C, p)$ $push_{\nabla\Gamma}(A, C, p) = allow(A, \Gamma_C(p')) \text{ where } p' = push_{\nabla}(C^{-1}(A), p) \text{ for all other cases of } p$

Note that in this case the allow set A has the general shape $(A_1^{\subseteq} \setminus A_2^{\subseteq})I^*$ (?), with the subset operator \subseteq optional, and with I possibly empty. To implement this optimization, it needs to be investigated if such a set A is closed under the operations $\partial_B(A)$, $\tau_{I_1}^{-1}(A)$, $A \cap V$, $R^{-1}(A)$, $C^{-1}(A)$, $A \leftarrow A_1$, A^{\subseteq} and C(A).