
Process Library Implementation Notes

Wieger Wesselink

April 26, 2024

1 Process Library Implementation Notes

1.1 Processes

Process expressions in mCRL2 are expressions built according to the following syntax:

expression C++ equivalent ATerm grammar
a(e) action(a,e) Action
P (e) process(P ,e) Process

P (d := e) process assignment(P ,d := e) ProcessAssignment
δ delta() Delta
τ tau() Tau∑
d

x sum(d,x) Sum

∂B(x) block(B,x) Block
τB(x) hide(B,x) Hide
ρR(x) rename(R,x) Rename
ΓC(x) comm(C,x) Comm`

V (x) allow(V ,x) Allow
x | y sync(x,y) Sync
x ↪ t at time(x,t) AtTime
x · y seq(x,y) Seq
c → x if then(c,x) IfThen

c → x ⋄ y if then else(c,x,y) IfThenElse
x ≪ y binit(x,y) BInit
x ∥ y merge(x,y) Merge
x T y lmerge(x,y) LMerge
x+ y choice(x,y) Choice

where the types of the symbols are as follows:

a, b strings (action names)
P a process identifier
e a sequence of data expressions
d a sequence of data variables
B a set of strings (action names)
R a sequence of rename expressions
C a sequence of communication expressions
V a sequence of multi actions
t a data expression of type real

x, y process expressions
c a data expression of type bool

A rename expression is of the form a → b, with a and b action names. A multi action is of the form
a1 | · · · | an, with ai actions. A communication expression is of the form b1 | · · · | bn → b, with b and bi
action names.

1

1.1.1 Restrictions

A multi action is a multi set of actions. The left hand sides of the communication expressions in C must be
unique. Also the left hand sides of the rename expressions in R must be unique.

2

1.1.2 Linear process expressions

Linear process expressions are a subset of process expressions satisfying the following grammar:

<linear process expression> ::= choice(<linear process expression>, <linear process expression>)

| <summand>

<summand> ::= sum(<variables>, <alternative>)

| <conditional action prefix>

| <conditional deadlock>

<conditional action prefix> ::= if_then(<condition>, <action prefix>)

| <action prefix>

<action prefix> ::= seq(<timed multiaction>, <process reference>)

| <timed multiaction>

<timed multiaction> ::= at_time(<multiaction>, <time stamp>)

| <multiaction>

<multiaction> ::= tau()

| <action>

| sync(<multiaction>, <multiaction>)

<conditional deadlock> ::= if_then(<condition>, <timed deadlock>)

| <timed deadlock>

<timed deadlock> ::= delta()

| at_time(delta(), <time stamp>)

<process reference> ::= process(<process identifier>, <data expressions>)

| process_assignment(<process identifier>, <data assignments>)

3

1.2 Guarded process expressions

We define the predicate is guarded for process expressions as follows: is guarded(p) = is guarded(p, ∅)

is guarded(a(e),W) = true
is guarded(δ,W) = true
is guarded(τ ,W) = true

is guarded(P (e),W) =

{
false if P ∈ W
is guarded(p,W ∪ {P}) if P /∈ W

where P (d) = p is the equation corresponding to P (e)
is guarded(p+ q,W) = is guarded(p,W) ∧ is guarded(q,W)
is guarded(p · q,W) = is guarded(p,W)
is guarded(c → p,W) = is guarded(p,W)
is guarded(c → p ⋄ q,W) = is guarded(p,W) ∧ is guarded(q,W)
is guarded(Σd:D p,W) = is guarded(p,W)
is guarded(p ↪ t,W) = is guarded(p,W)
is guarded(p ≪ q,W) = is guarded(p,W)
is guarded(p ∥ q,W) = is guarded(p,W) ∧ is guarded(q,W)
is guarded(p T q,W) = is guarded(p,W)
is guarded(p | q,W) = is guarded(p,W) ∧ is guarded(q,W)
is guarded(ρR(p),W) = is guarded(p,W)
is guarded(∂B(p),W) = is guarded(p,W)
is guarded(τ I(p),W) = is guarded(p,W)
is guarded(ΓC(p),W) = is guarded(p,W)
is guarded(∇V (p),W) = is guarded(p,W)

N.B. This specification assumes that process names are unique. In mCRL2 process names can be overloaded,
therefore in the implemenation W contains process identifiers (i.e. both the process name and the sorts of
the arguments) instead of process names.

4

1.3 Alphabet reduction

Alphabet reduction is a preprocessing step for linearization. It is a transformation on process expressions
that preserves branching bisimulation.

1.3.1 Notations

In this text action names are represented using a, b, . . . and multi action names using α, β, . . . So in general
we have α = a1 | . . . | an. In alphabet reduction data parameters play a minor role, therefore we choose
a notation in which data parameters are omitted. We use the abbreviation a = a(e1, . . . , en) to denote an
action, and α = a1 | . . . | an to denote a multi action, where e1, . . . , en are data expressions.Note that a
multi action is a multiset (or bag) of actions and a multi action name is a multiset of names. We write αβ
as shorthand for α∪ β and aβ for {a} ∪ β. Sets of multi action names are represented using A,A1, A2, . . . A
communication C maps multi action names to action names, and is denoted as {α1 → a1, . . . , αn → an}. A
renaming R is a substitution on action names, and is denoted as R = {a1 → b1, . . . , an → bn}. A block set
B is a set of action names. A hide set I is a set of action names.

1.3.2 Definitions

We define multi actions α using the following grammar:

α := a p α | a,

where a is an action, and where p is used to distinguish alternatives.
We define pCRL terms p using the following grammar:

p ::= a p P p δ p τ p p+ p p p · p p c → p p c → p ⋄ p p Σd:Dp p p ↪ t p p ≪ p,

and parallel mCRL terms q using the following grammar:

q ::= p p q ∥ q p q T q p q | q p ρR(q) p ∂B(q) p τ I(q) p ΓC(q) p ∇V (q).

Remark 1 Note that there is an unfortunate overload of the |-operator in both multi actions and process
expressions. This has consequences for the implementation, since it there is no clean distinction between
parallel and non-parallel operators.

Remark 2 The mCRL2 language also has a construct P (di1 = ei1 , . . . , dik = eik), but this is just a
shorthand notation. Therefore we will ignore it in this text.

1.3.3 Alphabet operations

Let A,A1 and A2 be sets of multi action names. Then we define

A⊆ = {α | ∃β.αβ ∈ A}
A1A2 = {αβ | α ∈ A1 and β ∈ A2}
A1 ↢ A2 = {α | ∃β.αβ ∈ A1 and β ∈ A2}

Note that β can take the value τ in the definition of A1 ↢ A2, which implies A1 ⊂ A1 ↢ A2. The set A⊆

has an exponential size, so whenever possible it should not be computed explicitly.
Let C be a communication set, then we define

C(A) = ∪α∈AComm(C, α)
C−1(A) = ∪α∈ACommInverse(C, α)
filter∇(C,A) = {γ → c ∈ C | ∃α∈A.γ ⊂ α}

5

where Comm and CommInverse are defined using pseudo code as follows:

Comm(C, α)
R := {α}
for γ → c ∈ C do

if ∃β.α = βγ then R := R ∪Comm(C, βc)
return R

CommInverse(C, α1,α2)
R := {α1α2}
for γ → c ∈ C do

if ∃β.α1 = βc then R := R ∪CommInverse(C, β,α2γ)
return R

Note that C−1(α) =CommInverse(C, α,τ).
Let R be a rename set, then we define

R(α) = {R(αi) | αi ∈ α}
R−1(α) = {β | R(β) = α}
R(A) = {R(α) | α ∈ A}
R−1(A) = {R−1(α) | α ∈ A}

Let I be a hide set, then we define

τ I(A) = {β | ∃α∈A,γ∈I∗ .α = βγ ∧ β ∩ I = ∅}
τ−1
I (A) = ∂I(A)I∗

Let B be a block set, then we define

∂B(A) = {α ∈ A | α ∩B = ∅}

We define a mapping act that extracts the individual action names of a set of multi action names:

act (a1 | . . . | an) = {a1 | . . . | an}
act (A) =

⋃
α∈A act (α)

1.3.4 The mapping α

We define the mapping α as follows. The value α(p, ∅) is an over approximation of the alphabet of process
expression p.

α(a,W) = {a}

α(P,W) =

{
∅ if P ∈ W
α(p,W ∪ {P}) if P /∈ W,

where P = p is the equation of P
α(δ,W) = ∅
α(τ ,W) = {τ}
α(p+ q,W) = α(p,W) ∪ α(q,W)
α(p · q,W) = α(p,W) ∪ α(q,W)
α(c → p,W) = α(p,W)
α(c → p ⋄ q,W) = α(p,W) ∪ α(q,W)
α(Σd:Dp,W) = α(p,W)
α(p ↪ t,W) = α(p,W)
α(p ≪ q,W) = α(p,W) ∪ α(q,W)
α(p ∥ q,W) = α(p,W) ∪ α(q,W) ∪ α(p,W)α(q,W)
α(p T q,W) = α(p,W) ∪ α(q,W) ∪ α(p,W)α(q,W)
α(p | q,W) = α(p,W)α(q,W)
α(ρR(p),W) = R(α(p,W))
α(∂B(p),W) = ∂B(α(p,W))
α(τ I(p),W) = τ I(α(p,W))
α(ΓC(p),W) = C(α(p,W))
α(∇V (p),W) = α(p,W) ∩ (V ∪ {τ})

6

Example 1
If C = {a | b → c}, then α(ΓC(a(1) | b(2))) = {a, b, c, a | b}. Note that the action c does not occur in the

transition system of this process expression.

Example 2 In the computation of {a1, a2, . . . , a20}∩α (a1 ∥ a2 ∥ . . . ∥ a20) the above mentioned optimiza-
tion is really needed.

1.3.5 Computation of the alphabet

When computing A∩α(p,W) for some multi action name set A, it may be beneficial to apply an optimization.
This is done to keep intermediate expressions small. We introduce α(p,W,A) = A ∩ α(p,W), and define it
as follows:

α(a,W,A) =

{
{a} if a ∈ A
∅ if a /∈ A

α(P,W,A) =

{
∅ if P ∈ W
α(p,W ∪ {P}, A) if P /∈ W,

where P = p is the equation of P
α(p+ q,W,A) = α(p,W,A) ∪ α(q,W,A)
α(p · q,W,A) = α(p,W,A) ∪ α(q,W,A)
α(c → p,W,A) = α(p,W,A)
α(c → p ⋄ q,W,A) = α(p,W,A) ∪ α(q,W,A)
α(Σd:Dp,W,A) = α(p,W,A)
α(p ↪ t,W,A) = α(p,W,A)
α(p ≪ q,W,A) = α(p,W,A) ∪ α(q,W,A)
α(p ∥ q,W,A) = α(p,W,A) ∪ α(q,W,A) ∪ α(p,W,A⊆)α(q,W,A⊆)
α(p T q,W,A) = α(p,W,A) ∪ α(q,W,A) ∪ α(p,W,A⊆)α(q,W,A⊆)
α(p | q,W,A) = α(p,W,A⊆)α(q,W,A⊆)

1.3.6 More efficient computation of the alphabet

The computation of α(p,W,A) can be done more efficiently. We define the function proc(p,W) as follows:

proc(a,W) = ∅

proc(P,W) =

{
∅ if P ∈ W
{P} ∪ proc(p,W) if P /∈ W

proc(p+ q,W) = proc(p,W) ∪ proc(q,W)
proc(p · q,W) = proc(p,W) ∪ proc(q,W)
proc(c → p,W) = proc(p,W)
proc(c → p ⋄ q,W) = proc(p,W) ∪ proc(q,W)
proc(Σd:Dp,W) = proc(p,W)
proc(p ↪ t,W) = proc(p,W)

Using this function we can change the computation of α(p,W,A) at three places:

α(p+ q,W,A) = α(p,W,A) ∪ α(q,W ∪ proc(p,W), A)
α(p · q,W,A) = α(p,W,A) ∪ α(q,W ∪ proc(p,W), A)
α(c → p ⋄ q,W,A) = α(p,W,A) ∪ α(q,W ∪ proc(p,W), A)

Note that the value proc(p,W) can be computed on the fly during the computation of α(p,W,A).

1.3.7 Bounded alphabet

In practice one often wants to compute α(p,A) = α(∇A(p)). This can be computed more efficiently as
follows:

7

α(a,A) =

{
{a} if a ∈ A
∅ if a /∈ A

α(P,A) = α(p,A), where P = p is the equation of P
α(p+ q, A) = α(p,A) ∪ α(q, A)
α(p · q, A) = α(p,A) ∪ α(q, A)
α(c → p,A) = α(p,A)
α(c → p ⋄ q, A) = α(p,A) ∪ α(q, A)
α(Σd:Dp,A) = α(p,A)
α(p ↪ t, A) = α(p,A)
α(p ≪ q, A) = α(p,A) ∪ α(q, A)
α(p ∥ q,A) = α(p,A) ∪ α(q, A) ∪ α(p,A⊆)α(q, A ↢ α(p,A⊆))
α(p T q, A) = α(p,A) ∪ α(q, A) ∪ α(p,A⊆)α(q, A ↢ α(p,A⊆))
α(p | q,A) = α(p,A⊆)α(q, A ↢ α(p,A⊆))
α(ρR(p), A) = R(α(p,R−1(A)))
α(∂B(p), A) = α(p, ∂B(A))
α(τ I(p), A) = τ I(α(p, τ

−1
I (A)))

α(ΓC(p), A) = C(α(p, C−1(A)))
α(∇V (p), A) = α(p,A ∩ V))

1.3.8 The mappings push, push∇ and push∂

We define mappings push, push∇ and push∂ such that push(p) is bisimulation equivalent to p, push∇(A, p)
is bisimulation equivalent to ∇A(p), and push∂(B, p) is bisimulation equivalent to ∂B(p). The goal of
these mappings is to push allow and block expressions deeply inside process expressions. It is important
to know that an allow set A in the expression ∇A(p) implicitly contains the empty multi action τ . Let E
= {P1(d) = p1, . . . , Pn(d) = pn} be a sequence of process equations.

push(p) = p if p is a pCRL expression
push(p ∥ q) = push (p) ∥ push (q)
push(p T q) = push (p) T push (q)
push(p | q) = push (p) | push (q)
push(ρR(p)) = ρR(push (p))
push(∂B(p)) = push∂(B, p)
push(τ I(p)) = τ I(push (p))
push(ΓC(p)) = ΓC (push (p))
push(∇V (p)) = push∇(V, p)

8

We assume that P∇
A,e is a unique name for every P ∈ {P1, . . . , Pn}, multi action name set A and sequence

of data expressions e.

push∇ (A, a) =

{
a if N(a) ∈ A
δ otherwise

push∇ (A,P (e)) =
P∇
A (e), where P (d) = p is the equation of P , and

where P∇
A (d) = push∇ (A, p) is a new equation

push∇ (A, δ) = δ
push∇ (A, τ) = τ
push∇ (A, p+ q) = ∇A(p+ q)
push∇ (A, p · q) = ∇A(p · q)
push∇ (A, c → p) = ∇A (c → p)
push∇ (A, c → p ⋄ q) = ∇A (c → p ⋄ q)
push∇ (A,Σd:Dp) = ∇A (Σd:Dp)
push∇ (A, p ↪ t) = ∇A (p ↪ t)
push∇ (A, p ≪ q) = ∇A (p ≪ q)

push∇(A, p ∥ q) = ∇A(A, p′ ∥ q′) where

{
p′ = push∇(A⊆, p)
q′ = push∇(A ↢ α(p′), q)

push∇(A, p T q) = ∇A(A, p′ T q′) where

{
p′ = push∇(A⊆, p)
q′ = push∇(A ↢ α(p′), q)

push∇(A, p | q) = ∇A(A, p′ | q′) where
{

p′ = push∇(A⊆, p)
q′ = push∇(A ↢ α(p′), q)

push∇(A, ρR(p)) = ρR(p
′) where p′ = push∇(R−1(A), p)

push∇(A, ∂B(p)) = push∇(∂B(A), p)
push∇(A, τ I(p)) = τ I(p

′) where p′ = push∇(τ−1
I (A), p)

push∇(A,ΓC(p)) = allow(A,ΓC(p
′)) where p′ = push∇(C−1(A), p)

push∇(A,∇V (p)) = push∇(A ∩ V, p),

Optimizations During the computation of push∇ the following optimizations are applied in the right
hand side of each equation:

∇A(p) =

{
p if (A ∪ {τ}) ∩ α(p) = α(p)
∇A∩α(p)(p) otherwise

∇∅(p) =

{
τ if p = τ
δ otherwise

ΓC(p) = Γfilter∇(C,α(p))(p)
δ | δ = δ
δ ∥ δ = δ

For non pCRL expression the alphabet α(p) is computed on the fly during the computation of push∇ (A, p).

Example 1 Let P = (a+b)·P . Then push∇ ({a}, P, ∅) = P ′, with P ′ = push∇ ({a}, (a+ b) · P, {(P, {a}, P ′)}) =
push∇ ({a}, (a+ b), {(P, {a}, P ′)}) · push∇ ({a}, P, {(P, {a}, P ′)}) = · · · = a · P ′.

Example 2 Let P = a·∇{a}(P). Then push∇ ({a}, P, ∅) = P ′, with P ′ = push∇
(
{a}, a · ∇{a}(P), {(P, {a}, P ′)}

)
=

push∇ ({a}, a, {(P, {a}, P ′)}) · push∇
(
{a},∇{a}(P), {(P, {a}, P ′)}

)
= · · · = a · P ′.

We assume that P ∂
A,e is a unique name for every P ∈ {P1, . . . , Pn}, multi action name set A and sequence

9

of data expressions e.

push∂(B, a) =

{
a if N(a) ∩B = ∅
δ otherwise

push∂(B,P (e)) =

P ∂
B,e(e)

where P (d) = p is the equation of P , and
where P ∂

B,e(d) = push∂ (B, p) is a new equation

push∂(B, δ) = δ
push∂(B, τ) = τ
push∂(B, p+ q) = push∂(B, p) + push∂(B, q)
push∂(B, p · q) = push∂(B, p) · push∂(B, q)
push∂(B, c → p) = c → push∂(B, p)
push∂(B, c → p ⋄ q) = c → push∂(B, p) ⋄ push∂(B, q)
push∂(B,Σd:Dp) = Σd:Dpush∂(B, p)
push∂(B, p ↪ t) = push∂(B, p) ↪ t
push∂(B, p ≪ q) = push∂(B, p) ≪ push∂(B, q)
push∂(B, p ∥ q) = push∂ (B, p) ∥ push∂ (B, q)
push∂(B, p T q) = push∂ (B, p) T push∂ (B, q)
push∂(B, p | q) = push∂ (B, p) | push∂ (B, q)
push∂(B, ρR(p)) = ρR

(
R−1 (B) , p

)
push∂(B, ∂B1(p)) = push∂(B ∪B1, p)
push∂(B, τ I(p)) = τ I (push∂ (B \ I, p))
push∂(B,ΓC(p)) = block(B,ΓC (push∂ (B

′, p)) where B′ = B \ {b ∈ B | ∃γ→c∈C .b ∈ γ ∧ c /∈ B}
push∂(B,∇V (p)) = push∇(∂B(A), p, ∅),

where

block(B, p) =

{
p if B = ∅
∂B(p) otherwise

Example 3 The presence of R−1(∂B(A)) instead of just R−1(A) in the right hand side of the rename opera-
tor is explained by the example push∇({b}, ρ{b→c}b). We see that ρ{b→c}push∇(R−1(A), p) = ρ{b→c}push∇({b}, b) =
ρ{b→c}b = c, which is clearly the wrong answer.

1.3.9 Allow sets

There are two rules in the definition of push∇ where the allow set can/should not be computed explicitly.

The computation of push∇(A, p ∥ q) involves computation of push∇(p,A⊆)̇. We want to avoid the compu-
tation of A⊆, since it can become very large. The computation of push∇(A, τ I(p)) involves computation of

push∇(p, τ−1
I (A))̇. The set τ−1

I (A) = AI∗ is infinite.
In the implementation we use allow sets of the form A⊆I∗, where A is a set of multi action names and

I is a set of action names. The ⊆ is optional and I may be empty. Such an allow set is stored as two sets
A and I, together with an attribute that tells if ⊆ is appicable. We need to show that allow sets are closed

10

under the operations in push∇.

∂B(A
⊆I∗) = τB(A)⊆τB(I)

∗

τ−1
I1

(
A⊆I∗

)
= ∂I1(A

⊆) (I ∪ I1)
∗(

A⊆I∗
)
∩ V = {β ∈ V | ∃α∈A.τ I(β) ⊑ α}

R−1
(
A⊆I∗

)
= R−1

(
A⊆)R−1 (I)

∗

C−1
(
A⊆I∗

)
⊆ C−1 (A)

⊆
act

(
C−1 (I)

)∗(
A⊆I∗

)
↢ A1 = A⊆I∗(

A⊆I∗
)⊆

= A⊆I∗

∂B(AI∗) = ∂B(A)τB(I)
∗

τ−1
I1

(AI∗) = ∂I1(A) (I ∪ I1)
∗

(AI∗) ∩ V = {β ∈ V | ∃α∈A.τ I(β) = α}
R−1 (AI∗) = R−1 (A)R−1 (I)

∗

C−1 (AI∗) ⊆ C−1 (A) act
(
C−1 (I)

)∗
(AI∗)

⊆
= A⊆I∗

where we used the following properties:

∂B (A1A2) = ∂B (A1) ∂B (A1)
∂B

(
A⊆) = τB(A)⊆

R−1 (A1A2) = R−1 (A1)R
−1 (A2)

R−1 (A∗) = R−1 (A)
∗

C−1
(
A⊆) ⊆ C−1 (A)

⊆

C−1 (A1A2) = C−1 (A1)C
−1 (A2)

C−1 (A∗) = C−1 (A)
∗

A⊆ ↢ A1 = A⊆

Note that in case of the communication we only have an inclusion relation instead of equality. This is
done to stay within the format A⊆I∗. As a consequence the implementation uses an over-approximation
of C−1

(
A⊆I∗

)
and C−1 (AI∗). Furthermore note that the property R−1

(
A⊆) = R−1 (A)

⊆
does not hold.

A counter example is R = {b → a} and A = {a, b | c}. In that case we have R−1
(
A⊆) = {a, b, c}⊆ and

R−1 (A)
⊆
= {a, b}⊆. Another property that was initially assumed, but that does not hold is (AI∗) ↢ A1 =

(A ↢ τ I(A1)) I
∗.

11

1.4 Optimization for push∇

In some cases the push∇ operator produces expressions that are too large. This section proposes an opti-
mization for the case push∇(A,ΓC(p)) that can help to prevent this problem for certain practical cases.

push∇(A,ΓC(p)) =

{
allow(A,ΓC\C′(push∇Γ(A

′, C ′, p))) if C ̸= C ′

push∇Γ(A,C, p)) otherwise,

with C ′ = {β → b ∈ C | b /∈
⋃

β′→b′∈C

β′} and A′ = ((C \ C ′)(A))⊆ and

push∇Γ(A,C, p ∥ q) = allow
(
A,ΓC

(
allow

(
C−1(A), p′ ∥ q′

)))
where

p′ = push∇Γ(A

′, C, p)
q′ = push∇Γ(A

′′, C, q)
A′ = C−1(A)⊆ \

(
C−1(A) \A

)
A′′ =

(
C−1(A) ↢ α(p′)

)
\
(
C−1(A) \A

)
push∇Γ(A,C, p T q) = allow

(
A,ΓC

(
allow

(
C−1(A), p′ T q′

)))
where

p′ = push∇Γ(A

′, C, p)
q′ = push∇Γ(A

′′, C, q)
A′ = C−1(A)⊆ \

(
C−1(A) \A

)
A′′ =

(
C−1(A) ↢ α(p′)

)
\
(
C−1(A) \A

)
push∇Γ(A,C, p | q) = allow

(
A,ΓC

(
allow

(
C−1(A), p′ | q′

)))
where

p′ = push∇Γ(A

′, C, p)
q′ = push∇Γ(A

′′, C, q)
A′ = C−1(A)⊆ \

(
C−1(A) \A

)
A′′ =

(
C−1(A) ↢ α(p′)

)
\
(
C−1(A) \A

)
push∇Γ(A,C, ∂B(p)) = push∇Γ(∂B(A), C, p)
push∇Γ(A,C,∇V (p)) = push∇Γ(A ∩ V,C, p)
push∇Γ(A,C, p) = allow(A,ΓC(p

′)) where p′ = push∇(C−1(A), p) for all other cases of p

Note that in this case the allow set A has the general shape
(
A⊆

1 \A⊆
2

)
I∗ (?), with the subset operator ⊆

optional, and with I possibly empty. To implement this optimization, it needs to be investigated if such a
set A is closed under the operations ∂B(A), τ−1

I1
(A), A ∩ V , R−1(A), C−1(A), A ↢ A1, A

⊆ and C(A).

12

