
PBES greybox implementation notes
Gijs Kant

26th April, 2024

1 Instantiation from PBES to Parity Game
1.1 PBES
Definition 1.1. Predicate formulae ϕ are defined by the following grammar:

ϕ ::= b | X(e⃗) | ¬ϕ | ϕ ⊕ ϕ | Qd : D . ϕ

where ⊕ ∈ {∧, ∨, ⇒}, Q ∈ {∀, ∃}, b is a data term of sort Bool, X ∈ X is a predicate variable, d
is a data variable of sort D, and e⃗ is a vector of data terms. We will call any predicate formula
without predicate variables a simple formula. We denote the class of predicate formulae F .

Definition 1.2. A First-Order Boolean Equation is an equation of the form:

σX(d : D) = ϕ

where σ ∈ {µ, ν} is a minimum (µ) or maximum (ν) fixed point operator, d is a data variable of
sort D, and ϕ is a predicate formula.

Definition 1.3. A Parameterised Boolean Equation System (PBES) is a sequence of First-Order
Boolean Equations:

E = (σ1X1(d1 : D1) = ϕ1) . . . (σnXn(dn : Dn) = ϕn)

We adopt the standard limitations: expressions are in positive form (negation occurs only in
data expressions) and every variable occurs only once as the left hand side of an equation. A
PBES that contains no quantifiers and parameters is called a Boolean Equation System (BES).
A PBES can be instantantiated to a BES by expanding the quantifiers to finite conjunctions or
disjunctions and substituting concrete values for the data parameters.

A one-to-one mapping can be made from a BES to an equivalent parity game if the BES has
only expressions that are either conjunctive or disjunctive. The parity game is then represented
by a game graph with nodes that represent propositional variables with concrete parameters
and edges that represent dependencies. To make instantiation of a PBES to a parity game
more directly we will preprocess the PBES to a format that only allows expressions to be either
conjunctive or disjunctive. This format is a normal form for PBESs that we call the Parameterised
Parity Game, defined as follows:

Definition 1.4. A PBES is a Parameterised Parity Game (PPG) if every right hand side of an
equation is a formula of the form:

PPG ::=
∧
i∈I

fi ∧
∧
j∈J

∀v⃗∈Dj
.
(
gj ⇒ Xj(ej)

)
|

∨
i∈I

fi ∨
∨
j∈J

∃v⃗∈Dj
.
(
gj ∧ Xj(ej)

)
.

1

where fi and gj are simple boolean formulae, and ej is a data expression. I and J are finite
(possibly empty) index sets.

The expressions range over two index sets I and J . The left part is a conjunction (or
disjunction) of simple expressions fi that can be seen as conditions that should hold in the current
state. The right part is a conjunction (or disjunction) of quantifiers over a (possibly empty)
vector of variables for next states Xj with parameters ej , guarded by simple expression gj .

Before transforming arbitrary PBESs to PPG we first define another Normal Form on PBESs
to make the transformation easier. This normal form can have an arbitrary sequence of bounded
quantifiers as outermost operators and has a conjunctive normal form at the inner. We call this
the Bounded Quantifier Normal Form (BQNF):

Definition 1.5. A First-Order Boolean formula is in Bounded Quantifier Normal Form (BQNF)
if it has the form:

BQNF ::= ∀d⃗ ∈ D . b ⇒ BQNF | ∃d⃗ ∈ D . b ∧ BQNF | CONJ

CONJ ::=
∧

k∈K

fk ∧
∧
i∈I

∀v⃗∈DI
.
(
gi ⇒ DISJi

)
DISJi ::=

∨
ℓ∈Li

fiℓ ∨
∨

j∈Ji

∃w⃗∈Dij
.
(
gij ∧ Xij(eij)

)
where b, fk, fiℓ, gi, and gij are simple boolean formulae, and eij is a data expression. K, I, Li,
and Ji are finite (possibly empty) index sets.

This BQNF is similar to Predicate Formula Normal Form (PFNF), defined elsewhere1, in that
quantification is outermost and in that the core is a conjunctive normal form. However, unlike
PFNF, BQNF allows bounds on the quantified variables (hence bounded quantifiers), and universal
quantification is allowed within the conjunctive part and existential quantification is allowed
within the disjunctive parts. These bounds are needed to avoid problems when transforming to
PPG.

1.2 Translation from BQNF to Parameterised Parity Game
In order to automatically transform a PBES to a PPG, we define a transformation function from
BQNF to PPG. For brevity, we leave out the types of the parameters.
For equation system E = (σX1(d⃗1) = ξ1) . . . (σXn(d⃗n) = ξn), with each ξi in BQNF, the
translation to PPG is defined as follows:

1A transformation to PFNF is implemented in the pbesrewr tool and documented at http://www.win.tue.nl/
mcrl2/wiki/index.php/Parameterised_Boolean_Equation_Systems.

2

http://www.win.tue.nl/mcrl2/wiki/index.php/Parameterised_Boolean_Equation_Systems
http://www.win.tue.nl/mcrl2/wiki/index.php/Parameterised_Boolean_Equation_Systems

s
(
E

) def= s
(
σX1(d⃗1) = ξ1

)
. . . s

(
σXn(d⃗n) = ξn

)
s
(
σX(d⃗) = f

) def= σX(d⃗) = f

s
(
σX(d⃗) = ∀v⃗ . b ⇒ ϕ

) def=
(

σX(d⃗) = ∀v⃗ . b ⇒ t(X̃, d⃗ + v⃗, ϕ)
)

t′(σ, X̃, d⃗ + v⃗, ϕ)

s
(
σX(d⃗) = ∃v⃗ . b ∧ ϕ

) def=
(

σX(d⃗) = ∃v⃗ . b ∧ t(X̃, d⃗ + v⃗, ϕ)
)

t′(σ, X̃, d⃗ + v⃗, ϕ)

s
(
σX(d⃗) =

∧
k∈K fk

∧
∧

i∈I(∀v⃗i
. gi ⇒ ϕi)

) def=
(

σX(d⃗) =
∧

k∈K fk

∧
∧

i∈I

(
∀v⃗i

. gi ⇒ t(X̃i, d⃗ + v⃗i, ϕi)
))

t′(σ, X̃1, d⃗ + v⃗1, ϕ1) . . . t′(σ, X̃m, d⃗ + v⃗m, ϕm)

s
(
σX(d⃗) =

∨
k∈K fk

∨
∨

i∈I(∃v⃗i
. gi ∧ ϕi)

) def=
(

σX(d⃗) =
∨

k∈K fk

∨
∨

i∈I

(
∃v⃗i

. gi ∧ t(X̃i, d⃗ + v⃗i, ϕi)
))

t′(σ, X̃1, d⃗ + v⃗1, ϕ1) . . . t′(σ, X̃m, d⃗ + v⃗m, ϕm)

with I = 1 . . . m, v⃗ ∩ d⃗ = ∅ (variables in v⃗ do not occur in d⃗), b, f , fk, gi are simple formulae, ϕ,
ϕi are formulae that may contain predicate variables, and

t(X, d⃗, ϕ) def=
{

ϕ if ϕ = X′(e),
X(d⃗) otherwise;

t′(σ, X, d⃗, ϕ) def=
{
∅ if ϕ = X′(e),
s(σX(d⃗) = ϕ) otherwise.

1.3 Move Quantifiers Inward
Note the following equality:

∀d⃗∈D .
∧
i∈I

ϕi =
∧
i∈I

(
∀d⃗∈D . ϕi

)
.

Since the PPG form requires conjuncts of quantifiers rather than quantifiers over conjuncts,
it is useful to rewrite expression such that conjunctions are more on the outside and universal
quantifiers more to the inside. In the rewriting, not all parameters of the quantifier have to be

3

moved inward (see e.g., Example 1.6). For this we introduce the quantifier inward rewriter sQI :

sQI(b) def= b

sQI(X(e)) def= X(e)

sQI(∃d⃗∈D . ϕ) def= ∃d⃗∈D . sQI(ϕ)

sQI(
∨
i∈I

ϕi)
def=

∨
i∈I

sQI(ϕi)

sQI(
∧
i∈I

ϕi)
def=

∧
i∈I

sQI(ϕi)

sQI(∀d⃗∈D . g =⇒
∧
i∈I

ϕi)
def=

∧
i∈I

(
∀d⃗∩free(ϕi) . gi =⇒ sQI(ϕi)

)
with ϕ an arbitrary expression in BQNF and b a data term of sort Bool and where

gi =
(

∃d⃗∩(free(g)\free(ϕi)) . filter(g, d⃗ \ free(ϕi))
)

∧ filter(g, d⃗ ∩ free(ϕi))

and filter is defined recursively as follows:

filter(b, d⃗) def=
{

b if
(

free(b) ∩ d⃗
)

= ∅,

∅ otherwise.

filter(ϕ1 ⊕ ϕ2, d⃗) def=

∅ if ϕ′

1 = ∅ ∧ ϕ′
2 = ∅,

ϕ′
1 if ϕ′

1 ̸= ∅ ∧ ϕ′
2 = ∅,

ϕ′
2 if ϕ′

1 = ∅ ∧ ϕ′
2 ̸= ∅,

ϕ′
1 ⊕ ϕ′

2 otherwise.

with ϕ′
i = filter(ϕi, d⃗), ⊕ ∈ {∧, ∨} and b is a data term of sort Bool.

Example 1.6. Example transformation:

forall x,y . (x < 5) => ((x==a) /\ (y==b));

should translate to:

(forall x . (x < 5) => (x==a)) /\ (forall y . (exists x . x < 5) => (y==b))

1.4 Partitioned state vector, transition groups, and dependency matrix
We regard the instantiation of PBESs to Parity Games as generating a transition system, where
states are propositional variables with concrete parameters and transitions are dependencies,
specified by the right hand side of the corresponding equation in the PBES.

We use the tool LTSmin to generate a Parity Game given a PBES.

1.4.1 Partitioned state vector

A vector ⟨x1, x2, . . . , xm⟩ for a fixed m. In casu PBES instantiation, the state vector is partitioned
as follows:

⟨X, x1, x2, . . . , xk⟩ ,

4

where X is a propositional variable, and for i ∈ {1 . . . k} each xi is the value of parameter i. k is the
total number of parameter signatures in the system, ordered alphabetically; the signature consists
of the name and type of the parameter. From the propositional variable X, the type ∈ {∧, ∨},
priority (an integer value) and fixpoint operator σ ∈ {µ, ν} can be derived.

1.4.2 Transition groups

The equations in the PBES specify the transitions between states. These transitions can be
partitioned by the part of the equation system they originate from. In this case, these are the
parts of the right hand sides of the equations.

For a PBES of the form

σX(d : D) =
∧
i∈I

∀ℓ:Di · gi(d, ℓ) =⇒ Xi(hi(d, ℓ)),

for each i ∈ I there is a transition group Xi which an associated transition relation →Xi
, defined

as:
Xi(d : D) →Xi Xi(hi(d, ℓ)),

for all ℓ : Di such that gi(d, ℓ).

Example 1.7. A specification of two sequential buffers (buffer.2):

eqn N = 2;
proc In(i : Pos, q : List(D)) =

∑
d:D

(#q < N) → r1(d) . In(i, q ◁ d)

+ (q ̸= []) → w(i + 1, head(q)) . In(i, tail(q));
proc Out(i : Pos, q : List(D)) =

∑
d:D

(#q < N) → r(i, d) . Out(i, q ◁ d)

+ (q ̸= []) → s4(head(q)) . Out(i, tail(q));
init allow({r1, c, s4}, comm({w | r → c}, In(1, []) ∥ Out(2, [])));

with the property that if a message is read through r1, it will eventually be sent through s4:

[true∗] (∀d : D . ([r1(d)] (νX . µY . ([s4(d)] X ∧ [¬s4(d)] Y))))

The resulting PBES looks as follows:

pbes νZ(qin, qout : List(D)) = (∀d:D . (#qin < 2) ⇒ X(qin ◁ d1, qout, d)) (1)
∧ (∀d0:D . (#qin < 2) ⇒ Z(qin ◁ d0, qout)) (2)
∧ ((qout ̸= []) ⇒ Z(qin, tail(qout))) (3)
∧ ((qin ̸= [] ∧ #qout < 2) ⇒ Z(tail(qin), qout ◁ head(qin))); (4)

νX(qin, qout : List(D), d : D) = Y(qin, qout, d); (5)
µY(qin, qout : List(D), d : D) = (head(qout) ̸= d) ∨ (qout = []) ∨ X(qin, tail(qout), d)) (6)

∧ (∀d0:D . (#qin < 2) ⇒ Y(qin ◁ d0, qout, d)) (7)
∧ ((head(qout) = d) ∨ (qout = []) ∨ Y(qin, tail(qout), d)) (8)
∧ ((qin ̸= [] ∧ #qout < 2) ⇒ Y(tail(qin), qout ◁ head(qin), d)); (9)

init Z([], []);

For this equation system, the structure of the state vector is ⟨X, qin, qout, d⟩. The initial state would
be encoded as ⟨Z, [], [], 0⟩. Since the initial state has no parameter d, a default value is chosen. The

5

numbers 1–9 behind the equation parts denote the different transition groups, i.e., each conjunct
of a conjunctive expression forms a group. E.g., var(3) = Z, params(var(3)) = ⟨qin, qout⟩ and
expr(3) = ((qout ̸= []) ⇒ Z(qin, tail(qout)). Group-Next(Z([], []), 3) yields the empty set because
qout = []. Group-Next(Z([], []), 2) results in {Z([d1], []), Z([d2], [])}.

1.4.3 Dependency matrix

For an equation σX(d : D) = ϕ, the list of parameters is params(X) def= d : D. Let free(d) be the
set of free data variables occurring in a data term d. Let used(ϕ) be the set of free data variables
occurring in an expression ϕ such that the variables are not merely passed on to the next state.
E.g., with X(a, b) = ξ, for the expression ϕ = a ∧ X(c, b), used(ϕ) = {a, c}. b is not in the set
because it does not influence the computation, but is only passed on to the next state. For a
formula ϕ, the function changed(ϕ) computes the variable parameters changed in the formula:

changed(X(d1, . . . , dm)) def= {pi | i ∈ {1 . . . m} ∧ pi = params(X)i ∧ di ̸= pi}

The function tf(ϕ) determines if ϕ contains a branch that directly results in a true or false (not
a variable). For group g and part i, we define read dependence dR and write dependence dW :

dR(g, i) def=
{

true if i = 1;
pi ∈ (params(var(g)) ∩ used(expr(g))) otherwise.

dW (g, i) def=
{

(occ(expr(g)) \ {var(g)} ≠ ∅) ∨ tf(expr(g)) if i = 1;
pi ∈ changed(expr(g), ∅) otherwise.

Definition 1.8 (PPG Dependency matrix). For a PPG P the dependency matrix DM(P) is a
K × M matrix defined for 1 ≤ g ≤ K and 1 ≤ i ≤ M as:

DM(P)g,i =

+ if dR(g, i) ∧ dW (g, i);
r if dR(g, i) ∧ ¬dW (g, i);
w if ¬dR(g, i) ∧ dW (g, i);
− otherwise.

Example 1.9. For the PBES in Example 1.7, the dependency matrix looks like this:
g X qin qout d
1 + + - w
2 + + - -
3 + - + -
4 + + + -
5 + - - -
6 + - + r
7 + + - -
8 + - + r
9 + + + -

The first row lists the state vector parts. The left column lists the
group numbers. A ‘+’ denotes both read and write dependency,
‘w’ denotes write dependency, ‘r’ read dependency, and ‘-’ no de-
pendency between the group and the state vector part. The effect
of caching due to this matrix can be explained by row number 5.
Transition group number 5 only moves states from X to Y without
affecting the parameters. Once such a transition has been computed
(by Group-Next) it can be easily seen that the transition can be
applied to any X-state by replacing the X with Y.

Helpful functions For an equation σX(d : D) = ϕ,

params(X) def= d : D .

6

Let free(d) be the set of free data variables occurring in a data term d. The function used is
defined using:

used(d) def= free(d)

used(X(e)) def= . . . (parameters that are used/read, not only passed on)

used(ϕ1 ⊕ ϕ2) def= used(ϕ1) ∪ used(ϕ2)

used(Qd : D . ϕ) def= used(ϕ) \ free(d)

For a formula ϕ, the function changed(ϕ, ∅) computes the variable parameters changed in the
formula, defined as follows:

changed(b, L) def= ∅

changed(¬ϕ, L) def= changed(ϕ, L)

changed(ϕ1 ⊕ ϕ2, L) def= changed(ϕ1, L) ∪ changed(ϕ2, L)

changed(Qd : D . ϕ, L) def= changed(ϕ, L ∪ {d})

changed(X(d1, . . . , dm), L) def= {pi | i ∈ {1 . . . m} ∧ pi = params(X)i ∧ (di ̸= pi ∨ di ∈ L)}

For a formula ϕ, the function reset(ϕ, d⃗) computes the variable parameters in d⃗ that are reset
in the formula (meaning that in a successor state that parameter value will not be used), defined
as follows:

reset(b, d⃗) def= ∅

reset(¬ϕ, d⃗) def= reset(ϕ, d⃗)

reset(ϕ1 ⊕ ϕ2, d⃗) def= reset(ϕ1, d⃗) ∪ reset(ϕ2, d⃗)

reset(Qv : V . ϕ, d⃗) def= reset(ϕ, d⃗)

reset(X(e), d⃗) def= d⃗ \ params(X)

For a formula ϕ, the function tf(ϕ) determines if contains a branch that directly results in a
boolean value (not a variable), defined as follows:

tf(b) def= true

tf(¬ϕ) def= tf(ϕ)

tf(ϕ1 ⊕ ϕ2) def= tf(ϕ1) ∨ tf(ϕ2)

tf(Qd : D . ϕ) def= tf(ϕ)

tf(X(e)) def= false

7

	Instantiation from PBES to Parity Game
	PBES
	Translation from BQNF to Parameterised Parity Game
	Move Quantifiers Inward
	Partitioned state vector, transition groups, and dependency matrix
	Partitioned state vector
	Transition groups
	Dependency matrix

