LPS definitions and an ATerm representation format for $\mu \mathrm{CRL}$ with multiactions and time
 Jan Friso Groote Yaroslav S. Usenko

April 26, 2024

Contents

1 LPS definitions 1
A Aterm format for mCRL2 after parsing 2
B Static Semantics and Well-formedness 2
B. 1 Static semantics 2
B.1.1 SSC of Specification 2
B.1.2 Process and Data Terms. (Sub-)Typing 4
C Context Information 5
C. 1 The signature of a specification 7
C. 2 Variables 8
C. 3 Well-formed μ CRL specifications 9
D ATerm representation format for MTLPSs 10
E ATerm representation format for LPSs (for $\mu \mathrm{CRL} \mathrm{v} 1$) 11
F ATerm representation format for input muCRL (for μ CRL v1) 12

1 LPS definitions

The equation below represents a Linear Process Equation for μ CRL with multiactions and time (MTLPS).

$$
\begin{aligned}
\mathrm{X}(\overrightarrow{d: D})= & \sum_{i \in I} \sum_{e_{i}: E_{i}} c_{i}\left(\overrightarrow{d, e_{i}}\right) \rightarrow \mathrm{a}_{i}^{0}\left(\overrightarrow{f_{i, 0}}\left(\overrightarrow{d, e_{i}}\right)\right)|\cdots| \mathrm{a}_{i}^{n(i)}\left(\overrightarrow{f_{i, n(i)}}\left(\overrightarrow{d, e_{i}}\right)\right) \subset t_{i}\left(\overrightarrow{d, e_{i}}\right) \cdot \mathrm{X}_{i}\left(\overrightarrow{g_{i}}\left(\overrightarrow{d, e_{i}}\right)\right) \\
& +\sum_{j \in J} \sum_{e_{j}: E_{j}} c_{j}\left(\overrightarrow{d, e_{j}}\right) \rightarrow \mathrm{a}_{j}^{0}\left(\overrightarrow{f_{j, 0}}\left(\overrightarrow{d, e_{j}}\right)\right)|\cdots| \mathrm{a}_{j}^{n(j)}\left(\overrightarrow{f_{j, n(j)}}\left(\overrightarrow{d, e_{j}}\right)\right) \subset t_{j}\left(\overrightarrow{d, e_{j}}\right) \\
& +\sum_{\overrightarrow{e_{\delta}: E_{\delta}}} c_{\delta}\left(\overrightarrow{d, e_{\delta}}\right) \rightarrow \delta \subset t_{\delta}\left(\overrightarrow{d, e_{\delta}}\right)
\end{aligned}
$$

where I and J are disjoint.

It is possible to translate multiactions to regular $\mu \mathrm{CRL}$ actions (with longer parameter lists). In this way a MTLPS can be translated to a TLPS, preserving equivalence. The TLPS that corresponds to the above MTLPS is defined in the following way.

$$
\begin{aligned}
\mathrm{X}(\overrightarrow{d: D})= & \sum_{i \in I} \sum_{e_{i}: \vec{i}_{i}} c_{i}\left(\overrightarrow{d, e_{i}}\right) \rightarrow \mathrm{a}_{i-}^{0} \mathrm{a}_{i-\ldots}^{1} \ldots \mathrm{a}_{i}^{n(i)}\left(\overrightarrow{f_{i, 0}}\left(\overrightarrow{d, e_{i}}\right), \ldots, \overrightarrow{f_{i, n(i)}}\left(\overrightarrow{d, e_{i}}\right)\right) \subset t_{i}\left(\overrightarrow{d, e_{i}}\right) \cdot \mathrm{X}_{i}\left(\overrightarrow{g_{i}}\left(\overrightarrow{d, e_{i}}\right)\right) \\
& +\sum_{j \in J} \sum_{\overrightarrow{e_{j}: E_{j}}} c_{j}\left(\overrightarrow{d, e_{j}}\right) \rightarrow \mathrm{a}_{j-\mathrm{a}_{j-}^{1} \ldots \mathrm{a}_{j}^{n(j)}}\left(\overrightarrow{f_{j, 0}}\left(\overrightarrow{d, e_{j}}\right), \ldots, \overrightarrow{f_{j, n(j)}}\left(\overrightarrow{d, e_{j}}\right)\right) \cdot t_{j}\left(\overrightarrow{\left(, e_{j}\right.}\right) \\
& +\sum_{\overrightarrow{e_{\delta}: E_{\delta}}} c_{\delta}\left(\overrightarrow{d, e_{\delta}}\right) \rightarrow \delta \subset t_{\delta}\left(\overrightarrow{d, e_{\delta}}\right)
\end{aligned}
$$

where I and J are disjoint, and $\mathrm{a}_{i}^{0}-\mathrm{a}_{i}^{1} \ldots \ldots \mathrm{a}_{i}^{n(i)}$ and $\mathrm{a}_{j}^{0}-\mathrm{a}_{j}^{1} \ldots \ldots \mathrm{a}_{j}^{n(j)}$ are new actions (for each i and j), parameterized by the concatenation of the parameter lists of the contained actions.

YSU: TODO :USY formalize below
Theorem 1.1. Given MTLPS1 $=(\mathrm{mCRL} 2)=$ MTLPS2,
$\operatorname{TLPS}($ MTLPS1 $)=($ timed mcrl $)=\operatorname{TLPS}($ MTLPS 2$)$.
Time can be eliminated from TLPSs in a similar way (see page 106 of the thesis).

A Aterm format for mCRL2 after parsing
 B Static Semantics and Well-formedness

In this section it is defined when a specification is correctly defined. We use the syntactical categories from the previous section (in teletype font) to refer to items in a specification. If we denote a concrete part of a specification, we prefer using the latex symbols, to increase readability. The definitions below are an adapted copy from those in [?].

In essence the static semantics says that functions and terms are well typed, and some sorts and functions are present in the specification. The validity of all static semantic requirements can efficiently be decided for any specification.

A specification is well formed, if it satisfies the static semantic requirements, there are no empty sorts and the sort Time is appropriately defined. We only give an operational semantics to well-formed specifications.

B. 1 Static semantics

A Specification must be internally consistent. This means that all objects that are used must be declared exactly once and are used such that the sorts are correct. It also means that action, process, constant and variable names cannot be confused. Furthermore, it means that communications are specified in a functional way and that it is guaranteed that the terms used in an equation are well-typed. Because all these properties can be statically decided, a specification that is internally consistent is called SSC (Statically Semantically Correct). All next definitions culminate in Definition??.

B.1.1 SSC of Specification

We assume that the specification has the form spec (sortspec?, opspec?, eqnspec?, actspec?, proscpec?, init) (an easy transformation of the input aterm brings it to this form). All of the parameters are optional except the last one (the minimal specification is spec(init(tau()))). Sometimes part of the specification is not used. For example, any sort specification is useless unless some functions are defined for them. And also functions specifications are useless if they do not occur in expressions. Such specifications are still considered SSC, although an implementation of the checker may issue a warning in such cases.

Let Sig be a signature and \mathcal{V} be a set of variables over Sig. We define the predicate 'is SSC wrt. Sig' inductively over the syntax of a Specification.

Sorts Sort declarations:

- A SortSpec $\operatorname{SortSpec}\left(\left[\right.\right.$ sspec $_{1}, \ldots$, sspec $\left.\left._{m}\right]\right)$ with $m \geq 1$ is SSC wrt. Sig iff
- all sspec $_{1}, \ldots$, sspec $_{m}$ are SSC wrt. Sig.
- Defined sort names are different: for all $i<j$, defined_sorts $\left(\right.$ sspec $\left._{i}\right) \neq$ defined_sorts $\left(\right.$ sspec $\left._{j}\right)$.
- A SortDecl SortDecIStandard $\left(\left[n_{1} \cdots n_{m}\right]\right)$ with $m \geq 1$ is SSC wrt. Sig iff all n_{1}, \ldots, n_{m} are pairwise different.
- A SortDecl $\operatorname{SortDecIRef}(n, s)$ with $m \geq 1$ is SSC wrt. Sig iff the sort expression s is SSC w.r.t Sig $\backslash\left[n_{1} \cdots n_{m}\right]$. Here we note that no recursive sort references are allowed.
- A SortDecl SortDeclStruct $\left(n,\left[\operatorname{cons}_{1} \ldots\right.\right.$, cons $\left.\left._{m}\right]\right)$ with $m \geq 1$ is SSC wrt. Sig iff all constructor expressions cons are SSC w.r.t Sig.
- A ConstDecl StructDeclCons $\left.\left(n,\left[\operatorname{proj}_{1} \ldots, \operatorname{proj}_{m}\right]\right), k\right)$ with $m \geq 0$ is SSC wrt. Sig iff
- both n and k are not declared as function or map (or $k==n i l()$)
- all projection expressions proj are SSC w.r.t Sig.
- A ProjDecl StructDecIProj(n, $\left.\operatorname{Dom}\left(\left[s_{1} \cdots s_{m}\right]\right)\right)$ with $m \geq 1$ is SSC wrt. Sig iff
- both n is not declared as function or map (or $n==\operatorname{nil}()$)
- sort expressions s are SSC w.r.t Sig

Data types

- A OpSpec

ConsSpec $\left(\left[\operatorname{IdDecls}\left(\left[n_{11}, \ldots, n_{1 l_{1}}\right], s_{1}\right), \ldots, \operatorname{IdDecls}\left(\left[n_{m 1}, \ldots, n_{m l_{m}}\right], s_{m}\right)\right]\right)$ or
$\operatorname{MapSpec}\left(\left[\operatorname{IdDecls}\left(\left[n_{11}, \ldots, n_{1 l_{1}}\right], s_{1}\right), \ldots, \operatorname{IdDecls}\left(\left[n_{m 1}, \ldots, n_{m l_{m}}\right], s_{m}\right)\right]\right)$ with $m \geq 1, l_{i} \geq$
$1, k_{i} \geq 0$ for $1 \leq i \leq m$ is SSC wrt. Sig iff

- for all $1 \leq i \leq m n_{i 1}, \ldots, n_{i l_{i}}$ are pairwise different,
- for all $1 \leq i \leq m$ it holds that s_{i} is SSC wrt. Sig.
- for all $1 \leq i<j \leq m$ it holds that if $n_{i k} \equiv n_{j k^{\prime}}$ for some $1 \leq k \leq l_{i}$ and $1 \leq k^{\prime} \leq l_{j}$, then type ${ }_{\text {Sig }}\left(s_{i}\right) \neq$ type $_{\text {Sig }}\left(s_{j}\right)$,
- A EqnSpec of the form:

$$
\begin{align*}
& \operatorname{EqnSpec}\left(\left[\operatorname{IdDecls}\left(\left[n_{11}, \ldots, n_{1 l_{1}}\right], s_{1}\right), \ldots, \operatorname{IdDecls}\left(\left[n_{m 1}, \ldots, n_{m l_{m}}\right], s_{m}\right)\right],\right. \tag{1}\\
& \left.\left[\operatorname{EqnSpec}\left(d_{1}, d_{1}^{\prime}\right) \ldots \operatorname{EqnSpec}\left(d_{k}, d_{k}^{\prime}\right)\right]\right) \tag{2}
\end{align*}
$$

with $m \geq 1, l_{i} \geq 1, k_{i} \geq 0$ for $1 \leq i \leq m$ is SSC wrt. Sig iff

- for all $1 \leq i, j \leq m n_{i j}$ are pairwise different,
- for all $1 \leq i \leq m$ it holds that s_{i} is SSC wrt. Sig.
- for all $1 \leq j \leq k$ it holds that d_{i} and d_{i}^{\prime} is SSC wrt. Sig $+n s$.
- for all $1 \leq j \leq k$ it holds that the types of d_{i} and d_{i}^{\prime} are uniquly compatible (wrt. Sig).

Actions A ActSpec of the form:
$\operatorname{ActSpec}\left(\left[\operatorname{ActDecl}\left(\left[n_{11}, \ldots, n_{1 l_{1}}\right], d_{1}\right) \ldots \operatorname{ActDecl}\left(\left[n_{m 1}, \ldots, n_{m l_{m}}\right], d_{m}\right)\right]\right)$ with $m \geq 1$ is SSC wrt. Sig iff

- for all $1 \leq i \leq m$ all $n_{i j}$ are pairwise different.
- none of them are in Sig.Fun \cup Sig.Map
- d_{i} is $\operatorname{Nil}()$ or d_{i} is $\operatorname{Dom}\left(\left[s_{1}, \ldots, s_{n}\right]\right)$, and all s_{j} are SSC wrt. Sig.

Processes

- A ProcSpec $\operatorname{ProcSpec}\left(\left[\operatorname{ProcDecl}\left(n_{1}, \operatorname{vars}_{1}, p_{1}\right), \ldots, \operatorname{ProcDecl}\left(n_{m}\right.\right.\right.$, vars $\left.\left.\left._{m}, p_{m}\right)\right]\right)$ with $m \geq 1$ is SSC wrt. Sig iff
- for each $1 \leq i<j \leq m$: if type $\left(\operatorname{vars}_{i}\right)=\operatorname{type}\left(\operatorname{vars}_{j}\right)$, then $n_{i} \neq n_{j}$,
- none of them are in Sig.Fun \cup Sig.Map \cup Sig.Act
- for each Name S^{\prime} it holds that $n: S_{1} \times \cdots \times S_{k} \rightarrow S^{\prime} \notin$ Sig.Fun \cup Sig.Map,
- the Names x_{1}, \ldots, x_{k} are pairwise different and $\left\{\left\langle x_{j}: S_{j}\right\rangle \mid 1 \leq j \leq k\right\}$ is a set of variables over Sig,
$-p$ is SSC wrt. Sig and $\left\{\left\langle x_{j}: S_{j}\right\rangle \mid 1 \leq j \leq k\right\}$.
- A Init of the form $\operatorname{Init}(p)$ is SSC wrt. Sig iff p SSC wrt. to Sig and \emptyset.

Definition B.1. Let E be a Specification. We say that E is SSC iff E is SSC wrt. $\operatorname{Sig}(E)$.

B.1.2 Process and Data Terms. (Sub-)Typing

Process terms Let Sig be a signature and \mathcal{V} be a set of variables over Sig. We say that a Process-term p is $S S C$ wrt. to Sig and \mathcal{V} iff one of the following hold:

- $p \equiv p_{1}+p_{2}, p \equiv p_{1} \| p_{2}, p \equiv p_{1}\left\lfloor p_{2}, p \equiv p_{1} \mid p_{2}, p \equiv p_{1} \cdot p_{2}\right.$ or $p \equiv p_{1} \ll p_{2}$ and both p_{1} and p_{2} are SSC wrt. Sig and \mathcal{V},
- $p \equiv p_{1} \triangleleft t \triangleright p_{2}$ and
$-p_{1}$ and p_{2} are SSC wrt. Sig and \mathcal{V},
$-t$ is SSC wrt. Sig and \mathcal{V} and $\operatorname{sor}_{\text {Sig }, \mathcal{V}}(t)=\langle$ Bool \rangle.
- $p \equiv p_{1} \subset t$ and
$-p_{1}$ is SSC wrt. Sig and \mathcal{V}
$-t$ is SSC wrt. Sig and \mathcal{V} and $\operatorname{sort}_{\text {Sig, } \mathcal{V}}(t)=$ Time.
- $p \equiv \delta$ or $p \equiv \tau$.
- $p \equiv \partial_{\left\{n_{1}, \ldots, n_{m}\right\}} p_{1}$ or $p \equiv \tau_{\left\{n_{1}, \ldots, n_{m}\right\}} p_{1}$ with $m \geq 1$ and
- for all $1 \leq i \neq j \leq m n_{i} \nsubseteq n_{j}$,
- for $1 \leq i \leq m$, if $n_{i}=n_{i, 1}|\cdots| n_{i, k}$, then $n_{i, j} \in$ Sig.ActNames.
- p_{1} is SSC wrt. Sig and \mathcal{V}.
- $p \equiv \nabla_{\left\{n_{1}, \ldots, n_{m}\right\}} p_{1}$ with $m \geq 1$ and
- for all $1 \leq i<j \leq m n_{i} \not \equiv n_{j}$,
- for $1 \leq i \leq m$, if $n_{i}=n_{i, 1}|\cdots| n_{i, k}$, then $n_{i, j} \in$ Sig.ActNames.
- p_{1} is SSC wrt. Sig and \mathcal{V}.
- $p \equiv \rho_{\left\{n_{1} \rightarrow n_{1}^{\prime}, \ldots, n_{m} \rightarrow n_{m}^{\prime}\right\}} p_{1}$ and
- for $1 \leq i \leq m$ both $n_{i}, n_{i}^{\prime} \in$ Sig.ActNames.
- for each $1 \leq i<j \leq m$ it holds that $n_{i} \not \equiv n_{j}$,
- for $1 \leq i \leq m$, the types of n_{i} and n_{i}^{\prime} are the same in Sig.
$-p_{1}$ is SSC wrt. Sig and \mathcal{V}.
$p \equiv \Gamma_{\left\{n_{1} \rightarrow n_{1}^{\prime}, \ldots, n_{m} \rightarrow n_{m}^{\prime}\right\}} p_{1}$ and
- for $1 \leq i \leq m$, if $n_{i}=n_{i, 1}|\cdots| n_{i, k}$, then $n_{i, j} \in$ Sig.ActNames.
- for $1 \leq i \leq m$ either $n_{i}^{\prime} \in$ Sig.ActNames or $n_{i}^{\prime}=\tau$.
- for each $1 \leq i \neq j \leq m$ it holds that $n_{i} \nsubseteq n_{j}$,
- for $1 \leq i \leq m$ it holds that, if $n_{i}=n_{i, 1}|\cdots| n_{i, k}$, then the types of all $n_{i, j}$ and n_{i}^{\prime} are the same in Sig.
$-p_{1}$ is SSC wrt. Sig and \mathcal{V}.
- $p \equiv \Sigma_{x: S} p_{1}$ and iff
$-\left(\mathcal{V} \backslash\left\{\left\langle x: S^{\prime}\right\rangle \mid S^{\prime}\right.\right.$ is a Name $\left.\}\right) \cup\{\langle x: S\rangle\}$ is a set of variables over Sig,
$-p_{1}$ is SSC wrt. Sig and $\left(\mathcal{V} \backslash\left\{\left\langle x: S^{\prime}\right\rangle \mid S^{\prime}\right.\right.$ is a Name $\left.\}\right) \cup\{\langle x: S\rangle\}$.
- $p \equiv n$ and $n=p^{\prime} \in$ Sig.Proc for some Process-term p^{\prime}, or $n \in$ Sig.Act.
- $p \equiv n\left(t_{1}, \ldots, t_{m}\right)$ with $m \geq 1$ and
$-n\left(x_{1}:\right.$ sort $_{\text {Sig }, \mathcal{V}}\left(t_{1}\right), \ldots, x_{m}:$ sort $\left._{\text {Sig }, \mathcal{V}}\left(t_{m}\right)\right)=p^{\prime} \in$ Sig.Proc for Names x_{1}, \ldots, x_{m} and Process-term p^{\prime}, or $n:$ sort $_{\text {Sig }, \mathcal{V}}\left(t_{1}\right) \times \cdots \times \operatorname{sort}_{\text {Sig }, \mathcal{V}}\left(t_{m}\right) \in$ Sig.Act,
- for $1 \leq i \leq m$ the Data-term t_{i} is SSC wrt. Sig and \mathcal{V}.

Sort expressions

- A SortExpr SortBool(), SortPos(), SortNat(), SortInt() are SSC.
- A SortExpr SortList(s), SortSet($s)$, SortBag (s) are SSC wrt. Sig iff sort expression s is SSC wrt. Sig.
- A SortExpr $\operatorname{SortRef}(n)$ is SSC wrt. Sig iff $n \in \operatorname{Sorts}($ Sig $)$.
- A SortExpr SortArrow($\left.\operatorname{Dom}\left(\left[n_{1}, \ldots, n_{m}\right]\right), n\right)$ with $m \geq 1$ is SSC wrt. Sig iff all sort expressions n are SSC w.r.t Sig.

Any sort expression that is SCC is also well-typed. I.e. it is impossible to specify an incorrectly typed sort.

C Context Information

The context consists of two parts. The static part corresponds to the global information in the specification. The dynamic part contains the definitions of the variables, and can change depending on the scope. Given a context of a specification κ, we denote the static context as $\operatorname{Sig}(\kappa)$ and the dynamic part as $\operatorname{Vars}(\kappa)$. The static context is a tupple

[^0]which represents the names and types of the sorts, operations, actions and processes defined in the specification. The types of the context operatinos are defined below:
\[

$$
\begin{array}{r}
\text { BasicSorts }=\{\text { String }\} \\
\text { DefinedSorts }: \text { String } \rightarrow \text { Type } \\
\text { Operations } \in \text { String } \times \text { Type } \\
\text { Actions } \in \text { String } \times \text { Type } \\
\text { Processes }: \text { String } \rightarrow \text { Type }
\end{array}
$$
\]

The sort Type is a sort expression containing defined sorts, a list of such expressions, or the empty type (unit type). It can be also unknown. The function basicType : Type \rightarrow Type unfolds all occurrences of derived sort names in a type expression.

The variables are defined as a function from Variable name to a variable type Variables : String \rightarrow Type.

Data Terms Let Sig be a signature, and let \mathcal{V} be a set of variables over Sig. A Data-term t is called SSC wrt. Sig and \mathcal{V} iff one of the following holds

- $t \equiv n$ with n a Name and $\langle n: S\rangle \in \mathcal{V}$ for some S, or $n: \rightarrow \operatorname{sort}_{\text {Sig, }}(n) \in \operatorname{Sig}$. Fun \cup Sig.Map.
- $t \equiv n\left(t_{1}, \ldots, t_{m}\right)(m \geq 1)$ and $n: \operatorname{sort}_{\text {Sig }, \mathcal{V}}\left(t_{1}\right) \times \cdots \times \operatorname{sort}_{\text {Sig }, \mathcal{V}}\left(t_{m}\right) \rightarrow \operatorname{sort}_{\text {Sig }, \mathcal{V}}\left(n\left(t_{1}, \ldots, t_{m}\right)\right) \in$ Sig.Fun \cup Sig.Map and all $t_{i}(1 \leq i \leq m)$ are SSC wrt. Sig and \mathcal{V}.

The typing rules of the built-in data types can be defined as follows: As for the sort and process expressions we introduce the following functions for data expressions: is_well_named all ids are defined, id_vars to identify the variables, types - all possible types the term can be, is_well_typed - is the term well-typed?

The function \mathbb{T}_{κ} is defined defined as (well-namedness of the arguments is assumed):

DataVar(String)		type (κ, String)
Opld(String)		type (κ, String)
Number(NumberString)		PNI(NumberString)
ListEnum $\left(d_{0}, \ldots, d_{n}\right)$	$\forall i \in \overline{0, n} \mathbb{T}\left(d_{i}\right) \equiv_{t} \mathbb{T}\left(d_{0}\right)$	$\operatorname{List}\left(\operatorname{minC}\left(\mathbb{T}\left(d_{0}\right), \ldots, \mathbb{T}\left(d_{n}\right)\right)\right)$
SetEnum $\left(d_{0}, \ldots, d_{n}\right)$	$\forall i \in \overline{0, n} \mathbb{T}\left(d_{i}\right) \equiv_{t} \mathbb{T}\left(d_{0}\right)$	$\operatorname{Set}\left(\min C\left(\mathbb{T}\left(d_{0}\right), \ldots, \mathbb{T}\left(d_{n}\right)\right)\right)$
$\begin{gathered} \operatorname{BagEnum}\left(\operatorname{BagEnumEIt}\left(d_{0}, d_{0}^{\prime}\right),\right. \\ \left.\ldots, \operatorname{BagEnumEIt}\left(d_{n}, d_{n}^{\prime}\right)\right) \end{gathered}$	$\forall i \in \overline{0, n}\left(\mathbb{T}\left(d_{i}\right) \equiv_{t} \mathbb{T}\left(d_{0}\right) \wedge \mathbb{T}\left(d_{i}^{\prime}\right) \equiv_{t} P N\right)$	$\operatorname{Bag}\left(\operatorname{minC}\left(\mathbb{T}\left(d_{0}\right), \ldots, \mathbb{T}\left(d_{n}\right)\right)\right)$
SetBagComp $(\operatorname{IdDecI}(v, s), d)$	$\begin{aligned} & w t(\kappa+(v, s), d) \wedge \\ & \quad\left(\mathbb{T}_{\kappa^{\prime}}(d)=\text { Bool } \vee \mathbb{T}_{\kappa^{\prime}}(d) \equiv_{t} P N\right) \end{aligned}$	$\begin{aligned} & \operatorname{Set}(s) \text { if } \mathbb{T}_{\kappa^{\prime}}(d)=\text { Bool } \\ & \operatorname{Bag}(s) \text { if } \mathbb{T}_{\kappa^{\prime}}(d) \equiv_{t} P N \end{aligned}$
$\operatorname{DataApp}\left(d, d_{0}, \ldots, d_{n}\right)$	$\begin{aligned} & \mathbb{T}(d)=A_{0} \ldots A_{n} \rightarrow B \wedge \\ & \mathbb{T}\left(d_{0}\right) \equiv_{t} A_{0} \wedge \cdots \wedge \mathbb{T}\left(d_{n}\right) \equiv_{t} A_{n} \end{aligned}$	B
$\begin{aligned} & \text { Forall }\left(\left[\operatorname{IdsDecl}\left(\overrightarrow{v_{0}}, s_{0}\right),\right.\right. \\ & \left.\left.\quad \ldots, \operatorname{IdsDec\|}\left(\overrightarrow{v_{n}}, s_{n}\right)\right], d\right) \end{aligned}$	$\begin{aligned} & w t\left(\kappa+\left(\overrightarrow{v_{0}}, s_{0}, \ldots, \overrightarrow{v_{n}}, s_{n}\right), d\right) \\ & \quad \wedge \mathbb{T}_{\kappa^{\prime}}(d)=\text { Bool } \end{aligned}$	Bool
$\begin{aligned} & \operatorname{Exists}\left(\left[\operatorname{IdsDecl}\left(\overrightarrow{v_{0}}, s_{0}\right),\right.\right. \\ & \left.\left.\quad \ldots, \operatorname{IdsDecl}\left(\overrightarrow{v_{n}}, s_{n}\right)\right], d\right) \end{aligned}$	$\begin{aligned} & w t\left(\kappa+\left(\overrightarrow{v_{0}}, s_{0}, \ldots, \overrightarrow{v_{n}}, s_{n}\right), d\right) \\ & \wedge \mathbb{T}_{\kappa^{\prime}}(d)=\text { Bool } \\ & \text { Bool } \end{aligned}$	Bool
$\begin{aligned} & \operatorname{Lambda}\left(\left[\operatorname{IdsDecl}\left(\overrightarrow{v_{0}}, s_{0}\right),\right.\right. \\ & \left.\left.\quad \ldots, \operatorname{IdsDecl}\left(\overrightarrow{v_{n}}, s_{n}\right)\right], d\right) \end{aligned}$	$w t\left(\kappa+\left(\overrightarrow{v_{0}}, s_{0}, \ldots, \overrightarrow{v_{n}}, s_{n}\right), d\right)$	$s_{0}^{\operatorname{len}\left(\overrightarrow{v_{0}}\right)}, \ldots, s_{n}^{\operatorname{len}\left(\overrightarrow{v_{n}}\right)} \rightarrow \mathbb{T}_{\kappa^{\prime}}(d)$
$\operatorname{Whr}\left(d,\left[v_{0}, d_{0}, \ldots, v_{n}, d_{n}\right]\right)$	$w t\left(\kappa+\left(v_{0}, \mathbb{T}\left(d_{0}\right), \ldots, v_{n}, \mathbb{T}\left(d_{n}\right)\right), d\right)$	$\mathbb{T}_{\kappa^{\prime}}(d)$

The following internal, or system, identifiers have the corresponding (polymorphic) types:

EmptyList()		List(TypeAny)
EmptySetBag()		SB (TypeAny)
NotOrCompl(d)	$\mathbb{T}(d)=$ Bool $\vee \mathbb{T}(d) \equiv_{t} S B($ TypeAny $)$	$\mathbb{T}(d)$
$\mathrm{Neg}(d)$	$\mathbb{T}(d) \equiv_{t} P N I$	Int
Size(d)	$\mathbb{T}(d) \equiv_{t} L S B($ TypeAny)	Nat
ListAt (d, d^{\prime})	$\mathbb{T}(d) \equiv_{t} \operatorname{List}($ TypeAny $) \wedge \mathbb{T}\left(d^{\prime}\right) \equiv_{t} P N$	ListArg (d)
$\operatorname{Div}\left(d, d^{\prime}\right)$	$\mathbb{T}(d) \equiv_{t} P N I \equiv_{t} \mathbb{T}\left(d^{\prime}\right)$	$\operatorname{div}(P N I)$
$\operatorname{Mod}\left(d, d^{\prime}\right)$	$\mathbb{T}(d) \equiv_{t} P N I \wedge \mathbb{T}\left(d^{\prime}\right) \equiv_{t}$ Pos	$\bmod (P N I)$
MultOrIntersect (d, d^{\prime})	$\left(\mathbb{T}(d) \equiv_{t} P N I \vee \mathbb{T}(d) \equiv_{t} S B(\right.$ TypeAny $)$)	$\operatorname{maxMoI}\left(\mathbb{T}(d), \mathbb{T}\left(d^{\prime}\right)\right)$
AddOrUnion (d, d^{\prime})	$\wedge \mathbb{T}(d) \equiv_{t} \mathbb{T}\left(d^{\prime}\right)$	
SubtOrDiff (d, d^{\prime})		
LTOrPropSubset $\left(d, d^{\prime}\right)$		Bool
GTOrPropSupset (d, d^{\prime})		Bool
LTEOrSubset (d, d^{\prime})		Bool
GTEOrSupSet (d, d^{\prime})		Bool
$\ln \left(d, d^{\prime}\right)$	$L S B(\mathbb{T}(d)) \equiv_{t} \mathbb{T}\left(d^{\prime}\right)$	Bool
Cons(d, d^{\prime})	$\operatorname{List}(\mathbb{T}(d)) \equiv_{t} \mathbb{T}\left(d^{\prime}\right)$	$\max \left(\operatorname{List}(\mathbb{T}(d)), \mathbb{T}\left(d^{\prime}\right)\right)$
$\operatorname{Snoc}\left(d, d^{\prime}\right)$	$\operatorname{List}\left(\mathbb{T}\left(d^{\prime}\right)\right) \equiv_{t} \mathbb{T}(d)$	$\max \left(\operatorname{List}\left(\mathbb{T}\left(d^{\prime}\right)\right), \mathbb{T}(d)\right)$
Concat (d, d^{\prime})	$\mathbb{T}(d) \equiv_{t} \operatorname{List}($ TypeAny $) \equiv_{t} \mathbb{T}\left(d^{\prime}\right)$	$\operatorname{List}\left(\max \left(\mathbb{T}(d), \mathbb{T}\left(d^{\prime}\right)\right)\right)$
$\mathrm{EqNeq}\left(d, d^{\prime}\right)$	$\mathbb{T}(d) \equiv_{t} \mathbb{T}\left(d^{\prime}\right)$	Bool
True()	Bool	
False()	Bool	
$\operatorname{Imp}\left(d, d^{\prime}\right) \quad \mathbb{T}(d) \equiv_{t} \mathbb{T}\left(d^{\prime}\right)=$ Bool		
$\operatorname{And}\left(d, d^{\prime}\right) \quad \mathbb{T}(d) \equiv_{t} \mathbb{T}\left(d^{\prime}\right)$	$\left.d^{\prime}\right)=$ Bool	

C. 1 The signature of a specification

Definition C.1. The signature $\operatorname{Sig}(E)$ of a Specification E consists of a seven-tuple
(Sort, Fun, Map, Act, Comm, Proc, Init)
where each component is a set containing all elements of a main syntactical category declared in E. The signature $\operatorname{Sig}(E)$ of E is inductively defined as follows:

- If $E \equiv$ sort $n_{1} \cdots n_{m}$ with $m \geq 1$, then $\operatorname{Sig}(E) \stackrel{\text { def }}{=}\left(\left\{n_{1}, \ldots, n_{m}\right\}, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\right)$.
- If $E \equiv: f d \rightarrow_{1} \cdots f d_{m}$ with $m \geq 1$, then $\operatorname{Sig}(E) \stackrel{\text { def }}{=}(\emptyset, F u n, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$, where

$$
\begin{array}{rll}
\text { Fun } & \stackrel{\text { def }}{=} & \left\{n_{i j}: \rightarrow S_{i} \mid f d_{i} \equiv n_{i 1}, \ldots, n_{i l_{i}}: \rightarrow S_{i}, 1 \leq i \leq m, 1 \leq j \leq l_{i}\right\} \\
& \cup & \left\{n_{i j}: S_{i 1} \times \cdots \times S_{i k_{i}} \rightarrow S_{i} \mid\right. \\
& & \left.f d_{i} \equiv n_{i 1}, \ldots, n_{i l_{i}}: S_{i 1} \times \cdots \times S_{i k_{i}} \rightarrow S_{i}, 1 \leq i \leq m, 1 \leq j \leq l_{i}\right\}
\end{array}
$$

- If $E \equiv \operatorname{map} m d_{1} \cdots m d_{m}$ with $m \geq 1$, then $\operatorname{Sig}(E) \stackrel{\text { def }}{=}(\emptyset, \emptyset, M a p, \emptyset, \emptyset, \emptyset, \emptyset)$, where

$$
\begin{array}{rll}
\text { Map } & \stackrel{\text { def }}{=} & \left\{n_{i j}: \rightarrow S_{i} \mid m d_{i} \equiv n_{i 1}, \ldots, n_{i l_{i}}: \rightarrow S_{i}, 1 \leq i \leq m, 1 \leq j \leq l_{i}\right\} \\
\cup & \left\{n_{i j}: S_{i 1} \times \cdots \times S_{i k_{i}} \rightarrow S_{i} \mid\right. \\
& \left.m d_{i} \equiv n_{i 1}, \ldots, n_{i l_{i}}: S_{i 1} \times \cdots \times S_{i k_{i}} \rightarrow S_{i}, 1 \leq i \leq m, 1 \leq j \leq l_{i}\right\}
\end{array}
$$

- If E is a Equation-specification, then $\operatorname{Sig}(E) \stackrel{\text { def }}{=}(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$.
- If $E \equiv a d_{1} \cdots a d_{m}$ with $m \geq 1$, then $\operatorname{Sig}(E) \stackrel{\text { def }}{=}(\emptyset, \emptyset, \emptyset, A c t, \emptyset, \emptyset, \emptyset)$, where

$$
\begin{array}{rll}
A c t & \stackrel{\text { def }}{=} & \left\{n_{i} \mid a d_{i} \equiv n_{i}, 1 \leq i \leq m\right\} \\
& \cup & \left\{n_{i j}: S_{i 1} \times \cdots \times S_{i k_{i}} \mid\right. \\
& \left.a d_{i} \equiv n_{i 1}, \ldots, n_{i l_{i}}: S_{i 1} \times \cdots \times S_{i k_{i}}, 1 \leq i \leq m, 1 \leq j \leq l_{i}\right\}
\end{array}
$$

- If $E \equiv \mathbf{c o m m} c d_{1} \cdots c d_{m}$ with $m \geq 1$, then $\operatorname{Sig}(E) \stackrel{\text { def }}{=}\left(\emptyset, \emptyset, \emptyset, \emptyset,\left\{c d_{i} \mid 1 \leq i \leq m\right\}, \emptyset, \emptyset\right)$.
- If $E \equiv \operatorname{proc} p d_{1} \cdots p d_{m}$ with $m \geq 1$, then $\operatorname{Sig}(E) \stackrel{\text { def }}{=}\left(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset,\left\{p d_{i} \mid 1 \leq i \leq m\right\}, \emptyset\right)$.
- If $E \equiv$ init $p e$ then $\operatorname{Sig}(E) \stackrel{\text { def }}{=}(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset,\{p e\})$.
- If $E \equiv E_{1} E_{2}$ with $\operatorname{Sig}\left(E_{i}\right)=\left(\operatorname{Sort}_{i}\right.$, Fun $_{i}$, Map $_{i}, \operatorname{Act}_{i}, \operatorname{Comm}_{i}, \operatorname{Proc}_{i}$, Init $\left._{i}\right)$ for $i=1,2$, then

$$
\begin{aligned}
& \operatorname{Sig}(E) \stackrel{\text { def }}{=}\left(\text { Sort }_{1} \cup \text { Sort }_{2}, \text { Fun }_{1} \cup \text { Fun }_{2}, \operatorname{Map}_{1} \cup \text { Map }_{2},\right. \\
& \text { Act } \left._{1} \cup \text { Act }_{2}, \text { Comm }_{1} \cup \text { Comm }_{2}, \text { Proc }_{1} \cup \text { Proc }_{2}, \text { Init }_{1} \cup \text { Init }_{2}\right) .
\end{aligned}
$$

Definition C.2. Let $\operatorname{Sig}=($ Sort, Fun, Map, Act, Comm, Proc, Init $)$ be a signature. We write
Sig.Sort for Sort, Sig.Fun for Fun, Sig.Map for Map, Sig.Act for Act,
Sig.Comm for Comm, Sig.Proc for Proc, Sig.Init for Init.

C. 2 Variables

Variables play an important role in specifications. The next definition says given a specification E, which elements from Name can play the role of a variable without confusion with defined constants. Moreover, variables must have an unambiguous and declared sort.

Definition C.3. Let $S i g$ be a signature. A set \mathcal{V} containing pairs $\langle x: S\rangle$ with x and S from Name, is called a set of variables over Sig iff for each $\langle x: S\rangle \in \mathcal{V}$:

- for each Name S^{\prime} and Process-term p it holds that $x: \rightarrow S^{\prime} \notin$ Sig.Fun \cup Sig.Map, $x \notin$ Sig.Act and $x=p \notin$ Sig.Proc,
- $S \in$ Sig.Sort,
- for each Name S^{\prime} such that $S^{\prime} \not \equiv S$ it holds that $\left\langle x: S^{\prime}\right\rangle \notin \mathcal{V}$.

Definition C.4. Let vd be a Variable-declaration. The function Vars is defined by:
$\operatorname{Vars}(v d) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}\emptyset & \text { if } v d \text { is empty, } \\ \left\{\left\langle x_{i j}: S_{i}\right\rangle \mid 1 \leq i \leq m,\right. \\ \left.1 \leq j \leq l_{i}\right\}\end{array} \quad\right.$ if $v d \equiv \operatorname{var} x_{11}, \ldots, x_{1 l_{1}}: S_{1} \ldots x_{m 1}, \ldots, x_{m l_{m}}: S_{m}$.
In the following definitions we give functions yielding the sort of and the variables in a Data-term t.

Definition C.5. Let t be a data-term and Sig a signature. Let \mathcal{V} be a set of variables over Sig. We define:

If a variable or a function is not or inappropriately declared no answer can be obtained. In this case \perp results.
Definition C.6. Let Sig be a signature, \mathcal{V} a set of variables over Sig and let t be a Data-term.

$$
\operatorname{Var}_{S i g, \mathcal{V}}(t) \stackrel{\text { def }}{=} \begin{cases}\{\langle x: S\rangle\} & \text { if } t \equiv x \text { and }\langle x: S\rangle \in \mathcal{V} \\ \emptyset & \text { if } t \equiv n \text { and } n: \rightarrow S \in \text { Sig.Fun } \cup \text { Sig.Map } \\ \bigcup_{1 \leq i \leq m} \operatorname{Var}_{S i g, \mathcal{V}}\left(t_{i}\right) & \text { if } t \equiv n\left(t_{1}, \ldots, t_{m}\right) \\ \{\perp\} & \text { otherwise. }\end{cases}
$$

We call a Data-term t closed wrt. a signature $S i g$ and a set of variables \mathcal{V} iff $\operatorname{Var}_{S i g, \mathcal{V}}(t)=\emptyset$. Note that $\operatorname{Var}_{\operatorname{Sig}, \mathcal{V}}(t) \subseteq \mathcal{V} \cup\{\perp\}$ for any data-term t. If $\perp \in \operatorname{Var}_{\operatorname{Sig}, \mathcal{V}}(t)$, then due to some missing or inappropriate declaration it can not be determined what the variables of t are on basis of Sig and \mathcal{V}.

C. 3 Well-formed μ CRL specifications

We define what well-formed specifications are. We only provide well-formed Specifications with a semantics. Well-formedness is a decidable property.
Definition C.7. Let Sig be a signature. We call a Name S a constructor sort iff $S \in$ Sig.Sort and there exists Names $S_{1}, \ldots, S_{k}, f(k \geq 0)$ such that $f: S_{1} \times \cdots \times S_{k} \rightarrow S \in$ Sig.Fun.
Definition C.8. Let E be a Specification that is SSC. We inductively define which sorts are non empty constructor sorts in E. A constructor sort S is called non empty iff there is a function $f: S_{1} \times \cdots \times S_{k} \rightarrow S \in \operatorname{Sig}$.Fun $(k \geq 0)$ such that for all $1 \leq i \leq k$ if S_{i} is a constructor sort, it is non empty. We say that E has no empty constructor sorts iff each constructor sort is non empty.
Definition C.9. Let E be a Specification. E is called well-formed iff

- E is SSC ,
- E has no empty constructor sorts,
- There is no indirect set, bag, or list recursion. $A=\operatorname{Set}(B), B=\operatorname{Ref}(A)$.
- There is no empty sort due to nonterminating struct recursion. $\mathrm{C}=\operatorname{struct}(\operatorname{leaf}(\mathrm{C})$, node($\mathrm{C}, \mathrm{C})$)
- If Time $\in \operatorname{Sig}(E) . S o r t$, then $\mathbf{0}: \rightarrow$ Time $\in \operatorname{Sig}(E)$. Fun $\cup \operatorname{Sig}(E) . M a p$ and $\leq:$ Time \times Time \rightarrow Bool $\in \operatorname{Sig}(E)$. Map.

D ATerm representation format for MTLPSs

A MTLPS is stored as an ATerm with the following functions. The sort of stored MTLPS is MTLPS.

```
spec2gen : DataTypes \(\times\) ActionSpec* \(\times\) InitProcSpec \(\rightarrow\) MTLPS
actspec : String \(\times\) String \(^{*} \rightarrow\) ActionSpec
initprocspec: TermAppl \(\times\) Variable \(^{*} \times\) Summand \(^{*} \rightarrow\) InitProcSpec
smd: Variable \({ }^{*} \times\) Action \({ }^{*} \times\) Time \(\times\) IndexedTerm \({ }^{*} \times\) TermAppl \(\rightarrow\) Summand
act : String \(\times\) TermAppl \(\rightarrow\) Action
time: TermAppl \(\rightarrow\) Time
notime \(: \rightarrow\) Time
it : Nat \(\times\) TermAppl \(\rightarrow\) IndexedTerm
dc: Nat \(\rightarrow\) IndexedTerm
d : Signature \(\times\) Equation \({ }^{*} \rightarrow\) DataTypes
e : Variable \({ }^{*} \times\) TermAppl \(\times\) TermAppl \(\times\) TermAppl \(\rightarrow\) Equation
v: String \(\times\) String \(\rightarrow\) Variable
s: String \({ }^{*} \times\) Function \(^{*} \times\) Function \(^{*} \rightarrow\) Signature
\(\mathrm{f}:\) String \(\times\) String \(^{*} \times\) String \(\rightarrow\) Function
```

The sort TermAppl consists of ATerm terms of the form $\operatorname{TermAppl}(f, t)$ or constant/variable symbols. The sort String consists of quoted constants, i.e. function symbols of arity 0 . The sort Nat is the built-in sort of natural numbers in the ATerm library. The list of elements of sort D is denoted by D^{*}.

The constructor of sort InitProcSpec contains the actual LPS parameters (from init) as the first parameter, the formal LPS parameters as the second argument, and the list of summands as the third parameter. The third parameter of smd is the term of sort Time representing the time at which the multiaction happens, or notime, indicating that no time info is given. The last parameter of smd is the boolean term representing the condition.

The second parameter of e is the boolean condition used for conditional term rewriting.
The first parameter of v is the variable name, appended with ' $\#$ '. The first parameter of f is the function name, appended with its parameter types list, separated by '\#' (for constants only '\#' is appended).

If the delta summand of the TLPS is present, δ has to be represented by the ATerm string "Delta", and actions with this name should not be allowed. An alternative is in using a special summand construction.

E ATerm representation format for LPSs (for μ CRL v 1)

An LPS is stored as an ATerm with the following functions. The sort of stored LPS is LPS.

```
spec2gen: DataTypes \(\times\) InitProcSpec \(\rightarrow\) LPS
initprocspec: Term \({ }^{*} \times\) Variable \(^{*} \times\) Summand \(^{*} \rightarrow\) InitProcSpec
smd: Variable \({ }^{*} \times\) String \(\times\) Term \({ }^{*} \times\) NextState \(\times\) Term \(\rightarrow\) Summand
terminated \(: \rightarrow\) NextState
i : Term \({ }^{*} \rightarrow\) NextState
d : Signature \(\times\) Equation \({ }^{*} \rightarrow\) DataTypes
e : Variable \({ }^{*} \times\) Term \(\times\) Term \(\rightarrow\) Equation
v: String \(\times\) String \(\rightarrow\) Variable
s: String \({ }^{*} \times\) Function \(^{*} \times\) Function \({ }^{*} \rightarrow\) Signature
\(\mathrm{f}:\) String \(\times\) String \(^{*} \times\) String \(\rightarrow\) Function
```

The sort Term consists of arbitrary ATerm terms where all function symbols must be quoted. The sort String consists of quoted constants, i.e. function symbols of arity 0 . The list of elements of sort D is denoted by D^{*}.

The first parameter of v is the variable name, appended with ' \#'. The first parameter of f is the function name, appended with its parameter types list, separated by '\#' (for constants only ' $\#$ ' is appended).

The constructor of sort InitProcSpec contains the actual LPS parameters (from init) as the first parameter, the formal LPS parameters as the second argument, and the list of summands as the third parameter. The last parameter of cm is the boolean term representing the condition.

F ATerm representation format for input muCRL (for $\mu \mathrm{CRL}$ v1)

An LPS is stored as an ATerm with the following functions. The sort of stored LPS is LPS.

```
spec2gen: DataTypes }\times\mathrm{ InitProcSpec }->\mathrm{ LPS
initprocspec:Term*}\times Variable* × Summand* -> InitProcSpec
smd : Variable* }\times\mathrm{ String }\times\mathrm{ Term* }\times\mathrm{ NextState }\times\mathrm{ Term }->\mathrm{ Summand
terminated : }->\mathrm{ NextState
i :Term* }->\mathrm{ NextState
d : Signature }\times\mathrm{ Equation* }->\mathrm{ DataTypes
e : Variable*}\times\mathrm{ Term }\times\mathrm{ Term }->\mathrm{ Equation
v :String }\times\mathrm{ String }->\mathrm{ Variable
s : String* }\times\mathrm{ Function* }\times\mathrm{ Function* }->\mathrm{ Signature
f:String }\times\mathrm{ String* }\times\mathrm{ String }->\mathrm{ Function
```

The sort Term consists of arbitrary ATerm terms where all function symbols must be quoted. The sort String consists of quoted constants, i.e. function symbols of arity 0 . The list of elements of sort D is denoted by D^{*}.

The first parameter of v is the variable name, appended with ' $\#$ '. The first parameter of f is the function name, appended with its parameter types list, separated by '\#' (for constants only ' $\#$ ' is appended).

The constructor of sort InitProcSpec contains the actual LPS parameters (from init) as the first parameter, the formal LPS parameters as the second argument, and the list of summands as the third parameter. The last parameter of cmd is the boolean term representing the condition.

[^0]: (BasicSorts, DefinedSorts, Operations, Actions, Processes)

