
1 Capture avoiding substitutions

This document specifies how capture avoiding substitutions are currently im-
plemented in mCRL2.

1.1 Data expressions

mCRL2 data expressions x are characterized by the following grammar:

x ::= v | f | x(x) | x whr v = x | ∀v.x | ∃v.x | λv.x,

where v is a variable and where f is a function symbol1.

1.2 Substitutions

A substitution σ is a function that maps variables to expressions. It is assumed
that σ has finite support, in other words there is a finite number of variables v
for which σ(v) ̸= v. We define the substitution update σ[v := v′] as follows:

σ[v := v′](w) =

{
v′ if w = v
σ(w) otherwise

1.3 Capture avoiding substitutions

Let σ be a substitution that maps variables to data expressions, and let x be an
arbitrary data expression. Let FV (x) be the free variables in x, and let FV (σ)
be the free variables in the right hand side of σ. More precisely,

FV (σ) =
⋃

v∈domain(σ)

FV (σ(v)) \ {v}.

We define a function C that computes the capture avoiding substitution σ(x)
using C(x, σ, FV (x)∪FV (σ)). The function C is recursively defined as follows:

C(v, σ, V) = σ(v)
C(f, σ, V) = f
C(x(x1), σ, V) = C(x, σ, V)(C(x1, σ, V))

C(x whr v = x1, σ, V) =

{
C(x, σ, V ∪ {v}) whr v = C(x1, σ, V ∪ {v}) if σ(v) = v and v /∈ V
C(x, σ′, V ∪ {v′}) whr v′ = C(x1, σ

′, V ∪ {v′}) otherwise

C(Λv.x, σ, V) =

{
Λv.C(x, σ, V ∪ {v}) if σ(v) = v and v /∈ V
Λv′.C(x, σ′, V ∪ {v′}) otherwise,

1For simplicity we use only single arguments in function applications, and single variables
in binding expressions. It is straightforward to generalize this to multiple arguments and
multiple variables.

1

where Λ ∈ {∀,∃, λ}, where v′ is an arbitrary variable such that σ(v′) = v′

and v′ /∈ V , and where σ′ = σ[v := v′]. The function C can be extended to
assignments as follows2:

C(v = x, σ, V) =

{
v = C(x, σ, V ∪ {v}) if σ(v) = v and v /∈ V
v′ = C(x, σ′, V ∪ {v′}) otherwise

Example Let x = ∀b:B.b ⇒ ∀c:B.c ⇒ d and let σ = [d := b]. Then
C(x, σ, FV (x) ∪ FV (σ)) = ∀b′:B.b′ ⇒ ∀c:B.c ⇒ b.

1.3.1 Capture avoiding substitutions with an identifier generator

Let σ be a subsitution that maps variables to data expressions. In this section
a substitution is defined that is more efficient than the capture avoiding sub-
stitution of section 1.3 because it does not require the calculation of a set V of
variables.

It does require that σ can indicate efficiently whether a variable occurs in the
σ(y) (with σ(y) ̸= y) for some variable y. Furthermore, it requires a identifier
generator, that can generate variable names that are guaranteed to be fresh in
the sense that they do not occur in any term.

This substitution has been implemented as replace variables capture avoiding with an identifier generator.
We use FV (x), FV (σ) and σ[v := v′] as defined in the previous section.

The substitution is defined as Ĉ that calculates σ(x) using Ĉ(x, σ) recursively
as follows:

Ĉ(v, σ) = σ(v)

Ĉ(f, σ) = f

Ĉ(x(x1), σ) = Ĉ(x, σ)(Ĉ(x1, σ))

Ĉ(x whr v = x1, σ) =

{
Ĉ(x, σ[v := v]) whr v = Ĉ(x1, σ) if v /∈ FV (σ),

Ĉ(x, σ[v := v′]) whr v′ = Ĉ(x1, σ
′}) otherwise.

Ĉ(Λv.x, σ, V) =

{
Λv.Ĉ(x, σ[v := v]) if v /∈ FV (σ),

Λv′.Ĉ(x, σ′, V ∪ {v′}) otherwise,

where Λ ∈ {∀,∃, λ}, where v′ is a fresh variable such that σ(v′) = v′ and
v′ /∈ FV (σ) ∪ FV (x). The identifier generator is used to generate the name for
v′.

In the examples below [] is the substitution mapping each variable onto itself
and [w := v′] is the subsitution mapping all variables onto itself, except that w
is mapped to v′.

Example Let x = ∀b:B.b ⇒ ∀c:B.c ⇒ d and let σ = [d := b]. Then Ĉ(x, σ) =
∀b′:B.b′ ⇒ ∀c:B.c ⇒ b where b′ is a fresh variable.

2The definition of C to assignments is not correct and not how they have been implemented.

2

Example It is necessary that v′ above is chosen such that v′ /∈ FV (σ)∪FV (x).
We provide two examples to show what goes wrong if this condition is not
satisfied.

1. If v′ /∈ FV (σ) is not required, the following is possible: Ĉ(∀v.w, [w :=
v′]) = ∀v′.Ĉ(w, [w := v′]) = ∀v′.v′.

2. If v′ /∈ FV (x) is not required, it is possible that: Ĉ(∀v, v′, []) = ∀v′.Ĉ(v′, []) =
∀v′.v.

Example In a where clause the substitutions applied to the equations af-
ter the where can remain unchanged. E.g., Ĉ(f(u, v) whr v = v, [u := v]) =
Ĉ(f(u, v), [u := v, v := v′]) whr v′ = Ĉ(v, [u := v]) = f(v, v′) whr v′ = v. In
an expression f(u, v) whr v = v the variable v at the lhs of the ‘=’ is a local
variable, whereas the v at the rhs is globally bound.

3

