
lpsconstelm

F.P.M. Stappers

April 26, 2024

Abstract

This documentation describes the implementation and test cases of the tool lpsconstelm
in the mCRL2 toolset. Basically, lpsconstelm is a tool which eliminates constant parameters
in a linear process specification (LPS).

Contents

1 Introduction 1

2 Definitions 1

3 Free Variables 2
3.1 Explanation . 2
3.2 Assumptions . 2

4 lpsconstelm definition 2
4.1 lpsconstelm definition - without free variables . 2
4.2 lpsconstelm definition - with free variables . 3

5 Proposals 4
5.1 Proposal 1 - without free variables . 4
5.2 Proposal 2 - without free variables . 5
5.3 Proposal 3 - without free variables . 6
5.4 Proposal 4 - with free variables . 8

6 Algorithm description 8
6.1 without free variables . 8
6.2 with free variables . 9

7 Algorithms 11
7.1 without free variables . 11
7.2 with free variables . 12

8 Test Cases 13

1

1 Introduction

The lpsconstelm tool is a tool for mCRL2 studio. The tool is a filter which reads from file
input.lps, which is a file in .lps format [3]. We make use of the LPS framework [2] to read
input.lps. For each detected constant process parameter the filter substitutes its constant value
and removes the process parameter from the linear process specification. After the algorithm
(Section 7.1) terminates, lpsconstelm will write the output to an output file output.lps (in the
.lps format.)

2 Definitions

The equation below is a linear process specification in mCRL2:

Definition 2.1. linear process specification (LPS)

X(
−−−→
d : D) =

∑
i∈I

∑
−−−→
ei:Ei

ci(
−−→
d, ei) → (a1i (

−→
fi,1(

−−→
d, ei))| . . . |an(i)i (

−−−→
fi,n(i)(

−−→
d, ei)))↪ ti(

−−→
d, ei) ·X(−→gi (

−−→
d, ei))+∑

j∈J

∑
−−−→
ej :Ej

cj(
−−→
d, ej) → (a1j (

−→
fj,1(

−−→
d, ej))| . . . |an(j)j (

−−−→
fj,n(j)(

−−→
d, ej)))↪ tj(

−−→
d, ej)+

∑
−−−→
eδ:Eδ

−→cδ (
−−→
d, eδ) → δ↪ tδ(

−−→
d, eδ)

Where I and J are disjoint.

For the description of the lpsconstelm tool we only use those elements of an LPS which are
relevant. So we use a simplified1 representation of an LPS .

Definition 2.2 (Simplified LPS).

X(
−−−→
d : D) =

∑
i∈I

∑
−−−→
ei:Ei

ci(
−−→
d, ei) → X(−→gi (

−−→
d, ei))

If we talk about an LPS in this article we refer to Definition 2.2. The different states of a process

are represented by the data vector parameter
−−−→
d : D. Type

−→
D may be a Cartesian product of n

data types, meaning that
−→
d is of a tuple (d1, . . . , dn). Let x ∈ {1, . . . , |

−→
d |}. The xth element

in the tuple is notated:
−→
d .x. The LPS expresses that in state

−→
d it can reach the new state

−→gi (
−−→
d, ei) under the condition that ci(

−−→
d, ei) is true. So, for each summand i from I we have a

function −→gi :
−→
D ×

−→
Ei →

−→
D and a function ci :

−→
D ×

−→
Ei → B. If we want to speak about a specific

statespace, which is generated from an LPS, we can instantiate this state space with the initial
state X(−→v0).
For an more detailed explanation of linear process specifications we refer to [1].

3 Free Variables

3.1 Explanation

If a parameter at a certain state does not influence the behavior of an LPS at that specific state,
we can assign to this process parameter a free variable. With these free variables we are able to

1Multiactions, time, deadlock and termination are not taken into account

2

model that process parameter can have values, which will not influence the behavior of an LPS.

3.2 Assumptions

We make certain assumptions about free variables which occur in an LPS, otherwise reasoning
about LPS’s would be to complicated. The first assumption is that the value of these variables
will not influence the behavior of the LPS. Another assumption is that free variables only occur
once in an LPS. Therefore each free variable is unique. Also we assume that each value of a state
is either a closed term or a free variable.

For further reading about linear process specification and free variables please refer to [4]

4 lpsconstelm definition

4.1 lpsconstelm definition - without free variables

In this definition we do not consider free variables. A parameter of an LPS can be replaced by
its initial value if it can be determined that this parameter remains constant throughout the
run of any trace, starting at the initial state. The elimination of constant parameters does not
reduce the resulting state space, however it may reduce the time and space needed to for example
generate a state space from an LPS.
If we have infinite time and space we can inspect each state and check whether a process param-
eter changes throughout the execution of the process. For this we define the reachable state set
R for each state (−→v0).

Definition 4.1. Let L be an LPS, where:

• I is the set of summand indices,−→
Ei is the set of sum variables of summand i,
ci is the condition function of summand i and
−→gi is the next state function of summand i.

RL(
−→v0) is the smallest set for which the following holds:

- −→v0 ∈ RL(
−→v0)

- For all i ∈ I and −→ei ∈
−→
Ei, if

−→v ∈ RL(
−→v0) and ci(

−−→v, ei) holds,
then −→gi (−−→v, ei) ∈ RL(

−→v0)

Definition 4.2. We define SL(
−→v0) to be the set of indices of process parameters for LPS L which

are constant. That is:

SL(
−→v0) = {j ∈ {1, . . . , |−→v0 |}|(∀−→v ∈RL(−→v0)(

−→v .j =
−→v0 .j))}

To get SL(
−→v0) we have to compute RL(

−→v0). This means we have to generate the entire state
space starting at state −→v0 . Generating the entire state space can take a lot of time and space; it
might take infinite time and/or space. However if we can make an approximation of Definition
4.2 we do not necessarily have to inspect all states. Note that if we use an approximation there
are cases in which not all constant parameters can be found. In practice we do not mind, because
these are hard to find and the cost/benefit is to small.

3

4.2 lpsconstelm definition - with free variables

A process parameter of an LPS can be replaced by its constant value if it can be determined that
this parameter remains constant throughout any run of the process, starting at the initial state.
However if a process parameter is initially a free variable and the process parameter remains
constant, the specific assigned value or the initial free variable value is used.

We define the reachable state set RFV for each state (−→v0).

Definition 4.3. Let L be an LPS, where

• I is the set of summand indices,−→
Ei is the set of sum variables of summand i,
ci is the condition function of summand i and
−→gi is the next state function of summand i.
FV is the set of free variables occurring in L.

RFV
L (−→v0) is the smallest set for which the following holds:

- −→v0 ∈ RFV
L (−→v0)

- For all i ∈ I and −→ei ∈
−→
Ei, if

−→v ∈ RFV
L (−→v0) and ci(

−−→v, ei) holds,
then −→gi (−−→v, ei) ∈ RFV

L (−→v0)

Definition 4.4. We define SFV
L (−→v0) to be the set of indices of process parameters which are

constant. That is:

SFV
L (−→v0) = {j ∈ {1, . . . , n}|∀−→v ,−→w∈RFV

L (−→v0)(
−→v .j ̸∈ FV ∧ −→w .j ̸∈ FV → (−→v .j =

−→w .j)))}

To get SFV
L (−→v0) we have to compute RFV

L (−→v0), and this means we have to generate the entire
state space starting from state −→v0 . However we interested in an approximation. We take proposal
3 (Section 5.7) as a starting point for constructing Proposal 4 (Section 5.12).

5 Proposals

In this section we speak about different techniques to find an algorithm that find as many constant
process parameters in polynomial time. These proposals are all estimations, so we can reduce
complexity of the given definitions in Section 4. Each proposal contains a small description,
which describes how a certain proposal was born.

5.1 Proposal 1 - without free variables

Because variables can occur in non-normal forms we introduce a form function which allows us
to take the normal form of such a data term. We write NF (t) for the normal form of data term

t. Let j ∈ {1, . . . , n} and let
−→
d be state vector. We assume

−→
d .j is a normal form. If

−→
d .j is equal

to NF (−→gi (
−−→
d, ei).j) for all i ∈ I we know argument at position j is constant. Each summand

has a condition ci. If a condition ci(
−−→
d, ei) does not hold, the next state X(−→gi (

−−→
d, ei)) can not be

reached. This is why we omit comparing each process parameter in
−→
d with such a X(−→gi (

−−→
d, ei)).

4

However some conditionsNF (ci(
−−→
d, ei)) might never be true, so it useless to compareNF (

−→
d .j)

with NF (−→gi (
−−→
d, ei).j) if NF (ci(

−−→
d, ei)) is not ”true”.

Definition 5.1. Let L be an LPS and we define S1
L:

S1
L = {j ∈ {1, . . . , n}|∀i∈I(∀−→d :

−→
D
((NF (ci(

−−→
d, ei)) = ”true”) ⇒ (NF (

−→
d .j) = NF (−→gi (

−−→
d, ei).j))))}

If we take a look at Example 5.2, we see it might be possible to improve our proposal to detect
more constant process parameters.

Example 5.2. Let CE1 be

proc P(x : Nat) = true -> P(x := 2 * x);

init P(x : = 0);

If we use Definition 5.1, we get:

S1
CE1

≡
{j ∈ {1}|∀x:Nat(x = 2 ∗ x)}

≡
{j ∈ {1}|false}

≡
∅

In Definition 5.1 it has to hold for every
−→
d , however we don’t want to inspect all possible

−→
d ’s.

We want to inspect it for a specific instantiation LPS of a X(−→v0).

5.2 Proposal 2 - without free variables

In Section 5.1 we see that Definition 5.1 can be improved, if we can give a specific
−→
d . We try to

improve that approximation, by giving
−→
d a specific value in S2

L. So we define:

Definition 5.3. Let L be an LPS

S2
L(
−→
d) = {j ∈ {1, . . . , n}|∀i∈I(NF (ci(

−−→
d, ei)) = ”true”) ⇒

−→
d .j = NF (−→gi (

−−→
d, ei).j)))}

We now can ”instantiate” the S2 with a
−→
d . If we instantiate S2 with −→v0, there is a problem. If

we take a look at Example 5.4, we can see why:

Example 5.4. Let E2 be

proc P(x,y: Nat) = (x=0) -> P(x:= 1, y:= 0) +

(x=1) -> P(x:= x, y:= 1);

init P(x := 0, y:= 0);

5

If we use Definition 5.3, we get:

S2
E2(⟨0, 0⟩)

≡
{j ∈ {1, 2}|∀i∈I(NF (ci(⟨0, 0⟩) = ”true”) ⇒ ⟨0, 0⟩.j = NF (−→gi (⟨0, 0⟩).j))}

≡
{j ∈ {1, 2}|

(NF (−→c1(⟨0, 0⟩) = ”true”) ⇒ ⟨0, 0⟩.j = NF (−→g1(⟨0, 0⟩).j))
∧
(NF (−→c2(⟨0, 0⟩) = ”true”) ⇒ ⟨0, 0⟩.j = NF (−→g2(⟨0, 0⟩).j))

}
≡

{j ∈ {1, 2}|
(”true” ⇒ ⟨0, 0⟩.j = NF (−→g1(⟨0, 0⟩).j))
∧
(”false” ⇒ ⟨0, 0⟩.j = NF (−→g2(⟨0, 0⟩).j))

}
≡

{j ∈ {1, 2}|⟨0, 0⟩.j = NF (−→g1(⟨0, 0⟩).j)}
≡

{j ∈ {1}|((0) = (1))}
∪
{j ∈ {2}|((0) = (0))}

≡
{2}

S2
E2(⟨0, 0⟩) = {2}. This indicates that the second process parameter is constant. However if

we take another step from the initial state, we see the the that the second process parameter is
not constant. We only inspect those states which are adjacent to the initial state, which might
result in a wrong solution.

5.3 Proposal 3 - without free variables

To overcome the problem in which only the states adjacent to the initial state are compared, we
suggest this proposal. First we redefine when the next state of summands should compared to
the initial state. So if we have a condition and the condition is an open term, it might be that
this condition will not reduce to a normal form which is either true or false. In such a case, there
might be an valuation of the variables in the condition for which the condition holds. If this is the
case we know the condition of a particular summand might be true, so the corresponding next
state should be inspected. The summands for which the conditions are false are not inspected.

Definition 5.5 (⊥). Let x be a process parameter. We define ⊥ to be the value of process
parameter x, if x is not constant.

We are interested in the largest subset of constant process parameters so:
Let X ⊆ {1, . . . , n} 2 be a set of indices of constant process parameters of an LPS:

2X is the set of indices which we are looking for

6

Definition 5.6. We define ⊗X(
−→
d):

Let j ∈ {1, . . . , |
−→
d |}.

If j ̸∈ X then ⊗X(
−→
d).j = ⊥.

If j ∈ X then ⊗X(
−→
d).j =

−→
d .j .

In order find the largest subset we give:

Definition 5.7. Let L be an LPS. We define: S3
L(
−→v0) ⊆ {1, . . . , n} as the biggest possible set

such that:

∀i∈I(NF (ci(
−−−−−−−→
⊗S3

L
(−→v0), ei)) ̸= ”false” ⇒ ∀j∈S3

L
(−→v0 .j = NF (−→gi (

−−−−−−−→
⊗S3

L
(−→v0), ei).j)))

Theorem 5.8. Let L be an LPS and
−→
d a vector of process parameters

S3
L(
−→
d) ⊆ SL(

−→
d)

Definition 5.9 (@). Let
−→
d = (d1, . . . dn), let j ∈ {1, . . . , |

−→
d |} and let x be a value.

−→
d @j(x) is defined as the substitution of the jth element of

−→
d with the value of x.

Definition 5.10 (φ(
−→
d ,X)). φ is a function of

−→
D × P(Nat) → P(

−→
D):

φ(
−→
d ,X) =

{
X = ∅ → {

−→
d }

X ̸= ∅ → ∪
y∈

−→
D.z

φ(
−→
d @z(y), X \ {z}) with z ∈ X

Proof. 5.8

We do case distinction on S3
L(
−→v0):

- Let S3
L(
−→v0) be empty, then S3

L(
−→v0) ⊆ SL(

−→v0) holds trivially.

- Let S3
L(
−→v0) not be empty. We prove that if there is an element in S3

L(
−→v0), then this element

is also in SL(
−→v0).

j ∈ S3
L(
−→v0)

≡ { Def 5.7 of S3
L}

j ∈ {k ∈ {1, . . . , n}|∀i∈I(NF (ci(
−−−−−−−→
⊗S3

L
(−→v0), ei)) ̸= false ⇒ −→v0.k = NF (−→gi (⊗S3

L
(−→v0), ei).k))}

≡ { Property of
−−−−−−−→
⊗S3

L
(−→v0 , ei)}

j ∈ {k ∈ {1, . . . , n}|∀
i∈I,−→ei∈

−→
Ei
(∀−→x ∈φ(−→v0,S3

L)(ci(
−−→x, ei) ⇒ −→v0 .k = −→gi (−−→x, ei).k))}

⇒ {φ(−→v0 , S3
L) ⊇ RL(

−→v0)3}

j ∈ {k ∈ {1, . . . , n}|∀
i∈I,−→ei∈

−→
Ei
(∀x∈RL(−→v0)(ci(

−−→x, ei) ⇒ −→v0.k = −→gi (−−→x, ei).k))}

3See Example 5.11

7

≡ {∀
i∈I,−→ei∈

−→
Ei
∀x∈RL(−→v0)ci(x, ei) ⇒

−→gi (−−→x, ei) ∈ RL(
−→v0))}

j ∈ {k ∈ {1, . . . , n}|∀
i∈I,−→ei∈

−→
Ei
(∀x∈RL(−→v0)∀y∈RL(−→v0)(y = −→gi (x, ei) ∧ ci(x, ei) ⇒ −→v0.k = y.k)}

≡ {−→v0 ∈ RL(
−→v0)}

j ∈ {k ∈ {1, . . . , n}|∀x∈RL(−→v0)(
−→x .k = −→v0 .k)}

≡ { Def 4.2 of SL}

j ∈ SL(
−→v0)

Example 5.11. Let S = {1, 2}. We have −→z = (1, 5, 3). The values of the 3th vector can
range between 1 and 4. If we want to map this vector to a statespace, knowing that the
first and the second are constant is, we get the following state space:

φ(−→v0, S3
L) = {(1, 5, 1), (1, 5, 2), (1, 5, 3), (1, 5, 4)}

which is a maximal statespace. If we have RL(
−→z) (and we know this is reachable set is mini-

mal) the maximal space space genarated would be {(1, 5, 1), (1, 5, 2), (1, 5, 3), (1, 5, 4)} and a
minimal set might be {(1, 5, 1), (1, 5, 4)}. So: RL(

−→z) ⊆ {(1, 5, 1), (1, 5, 2), (1, 5, 3), (1, 5, 4)} =
(1, 5,⊥) = −→z

So we have derived that each element in S3
L(
−→v0), is also in SL(

−→v0).
□

8

5.4 Proposal 4 - with free variables

We are interested in the largest subset of constant process parameters; for each process parameter
it should hold that it should equal to all their next state process parameters.

Let X ⊆ {1, . . . , n} of constant process parameters of an LPS:
In order find the largest subset we give:

Definition 5.12. Let L be an LPS. We define S4
L:

S4
L(
−→v0) ⊆ {1 . . . n}

is the biggest subset, for which holds:
∀j∈SL

4 (−→v0)(

NF (−→v0 .j) ̸∈ FV ⇒
∀i∈I(NF (ci(

−−−−−−−−→
⊗FV

S4
L
(−→v0), ei)) ̸= false ∧

NF (−→gi (
−−−−−−−−→
⊗FV

S4
L
(−→v0), ei).j) ̸∈ FV ⇒

NF (−→gi (
−−−−−−−−→
⊗FV

S4
L
(−→v0), ei).j) = NF (−→v0.j)

)
∧

NF (−→v0 .j) ∈ FV ⇒
∃k(∀i∈I(NF (ci(

−−−−−−−−→
⊗FV

S4
L
(−→v0), ei)) ̸= false ∧

NF (−→gi (
−−−−−−−−→
⊗FV

S4
L
(−→v0), ei).j) ̸∈ FV ⇒

NF (−→gi (
−−−−−−−−→
⊗FV

S4
L
(−→v0), ei).j) = k)

)
)

If we compare Definition 5.12 to Definition 4.4 we see that Theorem 5.13 holds :

Theorem 5.13. Let L be an LPS and
−→
d a vector op process parameters.

S4
L(
−→
d) ⊆ SFV

L (
−→
d)

6 Algorithm description

In this section we informally describe the algorithms for finding constant process parameters in
LPSs with and without free variables. First a description is given about how to determine the
constant process parameters when an LPS does not contain any free variables. Next an informal
description is given for finding constant process parameters when an LPS contains free variables.

6.1 without free variables

First the state vector is constructed from the initial process of the linear process specification.
Next the set S is defined, which S contains the indices for all process parameters that might be
constant. It might be the case that all process parameters are constant so we start off with having
all indices in set S. If a process parameter is detected to be variable, this process parameter is
removed from the set S.

9

We keep on removing elements from S until no more elements can be removed. Removing
the elements is done as follows: First we fill in all values of the process parameters, for which
the index is in S, into the conditions. Next all conditions are rewritten and compared to false.

If the rewritten condition, in its normal form, is different from false the condition might be
true, thus we calculate the nextstate of the current summand. We compare each element from
the state vector with the nextstate vector for which the indices are in S. If an element is not
equal, the corresponding index is removed from the set S. At value at the removed index of the
state vector is replaced by ⊥.

If no elements are removed from S during the iteration, there are either no more constant
process parameters or all process parameters are constant. If this is the case we stop the iteration.
Next all occurrences in of constant process parameters are substituted with their constant values
and are constant process parameters are removed form the list of process parameters from the
LPS.

6.2 with free variables

Before describing the algorithm informally we define some rules which should hold when we use
free variables. The set S is again the set of indices of constant process parameters.

The values of process parameters can either be given a specific value or a free variable. In
order to determine if a process parameter is constant or variable we define rules.

1. The process parameter has a specific value or is a free variable and a free variable is assigned
to this process parameter:
If free variable is assigned to a process parameter with a specific value, the value of this
process parameter remains unchanged. If the index of process parameter is in S, it will not
be removed from S. If we would allow replacement of a specific value with a free variable,
this might lead to a fault result. Consider the next example; Let x1 and x2 be two specific
values which are not equal to each other. Let v1 be a free variable. Let the index of
process parameter be in S. This process parameter has the value x1 and is replaced with
v1, the index of process parameter stays in S. If in a next state this process parameter
is substituted with x2, the index remains in S. This indicates that the process parameter
would remain constant. Clearly this observation is wrong. So we prohibited assigning free
variables by specific values.

2. A process parameter which is a free variable is substituted with a specific value:
The process parameter gets the value which is substituted and the process parameter
remains in S if the specific value is not ⊥. If the process parameter gets the value ⊥ the
process parameter is removed from S.

3. The process parameter which is specific value is substituted with another specific value:
If the substituted value differs from the original value, the process parameter becomes
marked variable and is removed from the set S. If they are equal, the process parameter
remains in the set S if it already had been in the set S.

If no constant process parameters can be removed, the algorithm ends. However it is possible
that we end in a situation like in Example 6.1. If we follow the algorithm, we see that the
algorithm detects the 3th element as a constant process parameter. However the 3th is not a
constant process parameter. To overcome the detection of fake constant process parameters, we
have to take an extra pass on the LPS. The current state vector is compared to the nextstates
of summands on which the condition is not false. If all process parameters of all nextstates

10

are equal4 to the current state, then there are no fake constant process parameters. If the pass
detects a process parameter which is not the same in the nextstate as in the current state, the
algorithm starts over with:

• S without the indices of found fake constant process parameters.

• All the process parameters which are fake constant process parameters are substituted with
the value ⊥.

If the ”Free Variable Checkup” does not find fake constants the algorithm ends.

Example 6.1. This LPS contains fake constant process parameters. FVx indicates the xth

element in the set of FV .

act a;
proc X(a, b , c) = a. X(FV4, FV5, a) +

a. X(FV6, FV7, b) +
a. X(8 , 9, FV8);

init X(FV1, FV2, FV3);

In this part we only describe the difference between the algorithm without free variables.
The algorithm remains basically the same. We only extend Algorithm Description 6.1 when
comparing elements from the current state with the corresponding next state. When comparing
we use the rules associated with free variables.

4with respect to the extended rules on free variables

11

7 Algorithms

7.1 without free variables

lpsconstelm (without free variables)

1: curr := v0
2: R := {1 . . . |v0|}
3: S := ∅
4: while S ̸= R do
5: S := R
6: for all (i ∈ I) ∧NF ((ci(curr)) ̸= false) do
7: for all j ∈ S do
8: if NF ((gi(curr).j) ̸= curr.j) then
9: curr.j := ⊥

10: R := R \ {j}
11: else if otherwise then
12: skip
13: end if
14: end for
15: end for
16: end while
17: return S

12

7.2 with free variables

lpsconstelm (with free variables)

1: curr := v0
2: R := {1 . . . |v0|}
3: S := ∅
4: while S = R do
5: while S = R do
6: S := R
7: for all (i ∈ I) ∧ (ci(curr) ̸= false) do
8: for all j ∈ S do
9: if curr.j ∈ FV then

10: if gi(curr).j ̸∈ FV then
11: curr.j := gi(curr).j
12: if curr.j = ⊥ then
13: R := R \ {j}
14: end if
15: else if gi(curr).j ∈ FV then
16: skip
17: end if
18: else if curr.j ̸∈ FV then
19: if (gi(curr).j ̸∈ FV) ∧ (gi(curr).j ̸= curr.j) then
20: curr.j = ⊥
21: R := R \ {j}
22: else if (gi(curr).j = curr.j) ∨ (gi(curr).j ∈ FV) then
23: skip
24: end if
25: end if
26: end for
27: end for
28: end while

{Free Variable Checkup}
29: for all j ∈ R do
30: t := NILL
31: for all i ∈ I do
32: if gi(curr).j ̸∈ FV ∧ t = NILL then
33: t := gi(curr).j
34: else if gi(curr).j ̸∈ FV ∧ t ̸= NILL ∧ t ̸= gi(curr).j then
35: R := R \ {j}
36: curr.j := ⊥
37: else if otherwise then
38: skip
39: end if
40: end for
41: end for
42: end while
43: return S

13

8 Test Cases

All specifications are given in mCRL2 specification. Transformation from a mCRL2 specification
to an LPS file is done with the tool: mcrl22lps. Each transformation is executed with the
-no-cluster option, unless mentioned otherwise.

Case 1

inputfile: DIR/tests/lpsconstelm/case1.mcrl2

info This case is designed to detect if the lpsconstelm can detect a simple constant
process parameter.

act action: Nat;
proc P(i: Nat) = action(i).P(i);
init P(0);

Result All occurrences of i should be substituted by 0 and i should be removed from the list of
process parameters.

Case 2

inputfile: DIR/tests/lpsconstelm/case2.mcrl2

info This case is designed to detect if the lpsconstelm can detect a simple non constant
process parameter.

act action: Nat;
proc P(i: Nat) = action(i).P(i+1);
init P(0);

Result i is not constant, therefor i should not be substituted and removed. The LPS
remains the same.

Case 3

inputfile: DIR/tests/lpsconstelm/case3.mcrl2

info This case is designed to detect if the lpsconstelm can detect a simple non constant
and a simple constant process parameter.

act action: Nat;
proc P(i,j: Nat) = action(j).P(i+1, j);
init P(0,5);

Result i is not constant, i is not constant.i is not to be removed, occurrences of
j should be substituted by 5 and j should be removed from the list of process parameters.

14

Case 4

inputfile: DIR/tests/lpsconstelm/case4.mcrl2

info This case is to designed to test the arguments -no-condition,
-no-reachable and the the way the tool deals with multiple simple summands.

act action: Nat;
proc P(i,j: Nat) = true → action(j).P(i+1, j)+

false → action(j).P(i+1, j+1);
init P(0,5);

Result -: Only the fist summand is not false, therefor j is constant and i
is not constant. All occurrences of j should be substituted by 5 and
j should be removed from the list of process parameters. Only the
first summand is written to the new LPS, because the
second summand is never evaluated.

-no-condition: All the conditions of the summands are considered to be true. If
this argument is used i and j are not constant5 and therefore no
process parameter should be substituted and to be removed.

-no-reachable: Only the fist summand is not false, therefor j is constant
and i is not constant. All occurrences of j should be substituted by
5 and j should be removed from the list of process parameters.
Both summands are written to in the new LPS, allthough the second
summand is never inspected. Note that in the second summand j is
the occurrences of j is substituted with 5.

Case 5

inputfile: DIR/tests/lpsconstelm/case5.mcrl2

info This case is designed to test the -no-singleton argument.

sort Singleton = struct x;
act action :Nat;
proc P(i : Nat, j : Singleton) = true → action(i). P(i+1,j);
init P(0,x);

Result -: j is found to be constant, so all occurrences of j are substituted
by the value x

-no-singleton : ”Singleton” has only one constructor. So all process parameters
of type ”Singleton” are not to be substituted and removed
from the list of process parameters. So in this case no
modification is made to the LPS.

15

Case 6

inputfile: DIR/tests/lpsconstelm/case6.mcrl2

info This test is designed to test a mCRL2 specification with multiple actions.
A multiple summand test.

act action :Nat;
proc P(i: Nat) = action(i). Q(i);

Q(i: Nat) = action(i). P(i);
init P(0);

Result From the generated LPS we see that i is constant. All occurrences of i are to substituted
by 0 and i is removed from the list of process parameters.

Case 7

inputfile: DIR/tests/lpsconstelm/case7.mcrl2

into This case is designed to test if guards will influence the lpsconstelm correctly.

act action :Nat;
proc P(i,j: Nat) = (i > 5) → action(i). P(i+1,j) +

(i == 5) → action(j). Q(j);
Q(i: Nat) = action(i). Q(i);

init P(0,0);

Result -: If no argument is used, all the conditions are false. So s3, j and i are
marked constant. All occurrences are substituted and removed from
the list of process parameters.

-no-condition: If this argument is used only j will be marked constant. All
occurrences of j are substituted by 0 and j is removed from the
list of process parameters.

Generated LPS
var freevar,freevar0: Nat;

proc P(s3: Pos, j,i: Nat) =

(s3 == 2) ->

action(i) .

P(s3 := 2, j := freevar0)

+ (s3 == 1 && 5 < i) ->

action(i) .

P(s3 := 1, i := i + 1)

+ (s3 == 1 && i == 5) ->

action(j) .

P(s3 := 2, j := freevar, i := j);

init P(s3 := 1, j := 0, i := 0);

16

Case 8

inputfile: DIR/tests/lpsconstelm/case8.mcrl2

info This case is designed to show the short comings of the algorithm. The lpsconstelm
cannot detect equality of (i==5). It will detect that i does not stay constant.

act action: Nat;
proc X(i: Nat) = (i < 5) → action(i).X(i+1) +

(i == 5) → action(i).Y(i, i);
Y(i,j: Nat) =action(j).Y(i,j+1);

init X(0);

Result All process parameters are not constant, so none of the occurrences of a
process parameter are substituted by their value and are removed from the list of
process parameters.

Generated LPS
var freevar0: Nat;

proc P(s3: Pos, i,j: Nat) =

(s3 == 2) ->

action(j) .

P(s3 := 2, j := j + 1)

+ (s3 == 1 && i < 5) ->

action(i) .

P(s3 := 1, i := i + 1, j := freevar0)

+ (s3 == 1 && i == 5) ->

action(i) .

P(s3 := 2, j := i);

var freevar: Nat;

init P(s3 := 1, i := 0, j := freevar);

17

References

[1] unknown author
Article not ready at the moment,

[2] J.W. Wesselink, http://www.win.tue.nl/ wieger/mcrl2/html/index.html
A C++ wrapper for the ATerm library.

[3] Aad Mathijssen
https://github.com/mCRL2org/mCRL2/blob/master/doc/specs/mcrl2.internal.txt, A de-
scription of the internal format of the mCRL2 language.

[4] unknown author, Article not ready at the moment

18

