
Some notes on a BES library

Jeroen Keiren

26th April 2024

1 Boolean Equation Systems

Boolean Equation Systems (BESs) [?] are a class of equation system that can be employed to
perform model checking of modal µ-calculus formulae. Basically, BESs are finite sequences
of least and greatest fixpoint equations, where each right-hand side of an equation is a pro-
position in positive form. It has been shown [?] that solving a BES is equivalent to the
model-checking problem. BESs are used for this purpose in e.g. the tool sets CADP [?] and
mCRL2 [?]. Several algorithms for solving BESs exist, see [?, ?]. Furthermore there are effi-
cient algorithms for some special cases, see [?, ?]. We formally introduce the theory required
for understanding the results obtained in this paper.

Definition 1.1. We assume a set X of Boolean variables, with typical elements X, X1, X2,
. . . and a type B with elements true, false representing the Booleans. Furthermore we have
fixpoint symbols µ for least fixpoint and ν for greatest fixpoint.

A Boolean Equation System is a system of fixpoint equations, inductively defined as
follows:

• ϵ is the empty BES

• if E is a BES, then (σX = f)E is also a BES, with σ ∈ {µ, ν} a fixpoint symbol and f
a formula over X , defined by the following grammar:

f, g ::= c | X | ¬f | f ∧ g | f ∨ g | f ⇒ g

*** Do we also need to include if(f, g, h) as expression; it is available in
the deprecated BES header? Its use is in the construction of BDD structures
for the comparison of formulae. Note that this could also be encoded as (f ⇒
g) ∧ (¬f ⇒ g) ***

where X ∈ X is a proposition variable of type B and c ∈ {true, false} is a Boolean
constant. We refer to the set of formulae over X with FX .

For any equation system E , the set of bound proposition variables, bnd(E), is the set of
variables occurring at the left-hand side of some equation in E . The set of occurring proposition
variables, occ(E), is the set of variables occurring at the right-hand side of some equation in
E .

bnd(ϵ)
∆
= ∅ bnd((σX = f) E) ∆

= bnd(E) ∪ {X}

occ(ϵ)
∆
= ∅ occ((σX = f) E) ∆

= occ(E) ∪ occ(f)

1

where occ(f) is defined inductively as follows:

occ(c)
∆
= ∅ occ(X)

∆
= {X}

occ(¬f) ∆
= occ(f) occ(f ⇒ g)

∆
= occ(f) ∪ occ(g)

occ(f ∨ g)
∆
= occ(f) ∪ occ(g) occ(f ∧ g)

∆
= occ(f) ∪ occ(g)

BESs E and F with bnd(E) ∩ bnd(F) = ∅ are referred to as non-conflicting BESs.
As usual, we consider only equation systems E in which every proposition variable occurs

at the left-hand side of at most one equation of E . We define an ordering ◁ on bound variables
of an equation system E , where X◁X ′ indicates that the equation for X precedes the equation
for X ′.

Proposition formulae are interpreted in a context of an environment η:X → B. For an
arbitrary environment η, we write η[X := b] for the environment η in which the proposition
variable X has Boolean value b.

Finding a solution of a BES amounts to finding an assignment of true or false to each
variable Xi such that all equations are satisfied. Furthermore if σi = µ, then the assignment
to Xi is as strong as possible, and if σi = ν it is as weak as possible, where the leftmost
equation takes priority over equations that follow. The concept of a solution is formalised
below.

Definition 1.2. Let η:X → B be an environment. The interpretation [[f]]η maps a proposition
formula f to true or false:

[[c]]η
∆
= c [[X]]η

∆
= η(X)

[[f ∨ g]]η
∆
= [[f]]η ∨ [[g]]η [[f ∧ g]]η

∆
= [[f]]η ∧ [[g]]η

Let η be an environment. Let bµ = false and bν = true. The solution of a BES, given η,
is inductively defined as follows:

[[ϵ]]η = η

[[(σX = f)E]]η = [[E]]η[X := f([[E]]η[X := bσ])]

We also write η(X) to denote the interpretation of X in environment η. In the sequel, when
we refer to solving a BES we mean computing the solution of the BES.

We introduce the following terminology.

Definition 1.3. Let E be an equation system. Then

• E is closed whenever occ(E) ⊆ bnd(E);

• E is solved whenever occ(E) = ∅;

For closed BES E , [[E]]η = [[E]]η′ for arbitrary environments η and η′, hence we may omit
the environment in this case. Also observe that according to the semantics ∧ and ∨ are
commutative and associative, hence we may write e.g.

∧j
i=0 fi instead of f0 ∧ . . . fn, for

formulae fi.

2

For a closed BES E we define the right hand side rhs of a propositional variable X ∈ bnd(E)
as the right hand side of the defining equation of X in E :

rhs(X, (σY = f)E) ∆
=

{
f if X = Y

rhs(X, E) otherwise

Besides assignments we can also define the notion of substitution on a BES.

Definition 1.4. A substitution σ:X → FX is a function assigning a boolean expression to
a variable. We define application of a substitution σ to a boolean expression inductively as
follows:

σ(c)
∆
= c σ(X)

∆
=

{
Y if X := Y in σ

X otherwise

σ(¬f) ∆
= ¬σ(f) σ(f ⇒ g)

∆
= σ(f) ⇒ σ(g)

σ(f ∨ g)
∆
= σ(f) ∨ σ(g) σ(f ∧ g)

∆
= σ(f) ∧ σ(g)

We now introduce some restricted BES formats which exhibit some interesting theoretic
properties.

Definition 1.5. A closed BES E is in simple form (SF) if every equation in E is of the
form σX = f , σX =

∧n
i=0 fi or σX =

∨n
i=0 fi, where n > 0, and f is either a propositional

variable, or one of the Boolean constants true or false.

That is, a closed BES is in simple form if every right hand side is either a single variable
or Boolean constant, or it is a conjunction or a disjunction over propositional variables or
Boolean constants. Conjunctions and disjunctions may not appear mixed in a single right
hand side. Note that every closed BES can be transformed into simple form in polynomial time
in such a way that the variables in the original BES are preserved, and variables that occur in
both BESs have the same solution, see [?]. An equation can, for example, be transformed to
simple form as follows. Given an equation σX =

∧k
i=0 fi, and some fj is disjunctive, replace

this single equation by two equations (σX =
∧j−1

i=0 ∧X ′∧k
i=j+1)(σX

′ = fj), where X
′ is fresh.

The case for ∨ is analogous, and the transformation can be repeated until a BES in simple
form is obtained.

We can also restrict a BES such that it does not contain Boolean constants. This is
referred to as recursive form.

Definition 1.6. A closed BES E is in recursive form (RF) if the Boolean constants true and
false do not occur in E .

The transformation of a BES to a BES in RF can also be done in a solution preserving way,
introducing auxiliary equations for Boolean constants true and false.

When we combine the notions of simple form and recursive form we obtain the concept
of simple recursive form.

Definition 1.7. A closed BES E is in simple recursive form (SRF) if E is in simple form,
and the Boolean constants true and false do not occur in E .

The translation of a BES to SRF is simply the composition of the translations of a BES to
SF and RF, and hence is also solution preserving.

3

Definition 1.8. A BES E is in conjunctive form if every equation in E is of the form
σX =

∧n
i=0 fi, with n ⩾ 0, and fi a propositional variable or a Boolean constant.

That is, a BES in conjunctive form only contains conjuncts, single variables or Boolean
constants as right hand sides. It has been shown [?] that given a BES E and an environment
η there is a BES E ′ in conjunctive form such that E and E ′ have the same solutions in η.

A similar notion is a BES in disjunctive form, i.e. a BES that only contains disjuncts,
single variables or Boolean constants as right hand sides.

Definition 1.9. A BES E is in disjunctive form if every equation in E is of the form σX =∨n
i=0 fi, with n ⩾ 0, and fi a propositional variable or Boolean constant.

A derived notion of a closed equation system E is its dependency graph GE , which is defined
as a structure ⟨V,→⟩, where:

• V = bnd(E);

• X → Y iff there is some equation σX = f in E with Y ∈ occ(f);

We introduce the notion of rank of an equation, and some derived notions. These notions
are an indication of the complexity of the BES, as well as a measure that occurs in the
computational complexity of some of the algorithms for solving BESs.

Definition 1.10. Let E be an arbitrary equation system. The rank of some X ∈ bnd(E),
denoted rank(X), is defined as rank(X) = rankν,X(E), where rankν,X(E) is defined inductively
as follows:

rankσ,X(ϵ) = 0

rankσ,X((σ′Y = f)E) =


0 if σ = σ′ and X = Y
rankσ,X(E) if σ = σ′ and X ̸= Y
1 + rankσ′,X((σ′Y = f)E) if σ ̸= σ′

Observe that rank(X) is odd iff X is defined in a least fixpoint equation.

The alternation hierarchy of an equation system can be thought of as the number of
syntactic alternations of fixpoint signs occurring in the equation system. The alternation
hierarchy ah(E) of an equation system E can be defined as the difference between the largest
and the smallest rank occurring in E , formally ah(E) = max{rank(X) | X ∈ bnd(E)} −
min {rank(X) | X ∈ bnd(E)}.

Given an equation (σX = f) in SF, the function op(X) returns whether f is conjunctive
(∧), disjunctive (∨) or neither (⊥);

An alternative characterisation of the solution of a particular proposition variable X in
an equation system E in SRF is obtained through the use of the dependency graph GE . We
first define the notion of a ν-dominated lasso.

Definition 1.11. Let E be a closed equation system, and let GE be its dependency graph. A
lasso through GE , starting in a node X, is a finite path ⟨X0, X1, . . . , Xn⟩, satisfying X0 = X,
Xn = Xj for some j ≤ n, and for each 1 < i ≤ n, Xi−1 → Xi. A lasso is said to be
ν-dominated if min{rank(Xi) | j ≤ i ≤ n} is even; otherwise, it is µ-dominated.

4

The following lemma is loosely based on lemmata taken from Keinänen (see lemmata 40
and 41 in [?]).

Lemma 1.12. Let E be a closed equation system in SRF, and let GE be its dependency
graph. Let X ∈ bnd(E). Then:

1. If E is disjunctive, then [[E]](X) = true iff some lasso starting in X in GE is ν-dominated;

2. If E is conjunctive, then [[E]](X) = false iff some lasso starting in X in GE is µ-dominated;

Proof We only consider the first statement; the proof of the second statement is analogous.
Observe that when the proposition variable on the cycle of the lasso has an even lowest rank, it
is a greatest fixpoint equation νX ′ = f , with X ′◁Y for all other equations σY = g that are on
the cycle. This follows from the fact that these have higher ranks. Gauß elimination [?] allows
one to substitute g for Y in the equation for X ′, yielding νX ′ = f [Y :=g]. Since, ultimately,
X ′ depends on X ′ again, this effectively enables one to rewrite νX ′ = f to νX ′ = f ′ ∨ X ′.
The solution to νX ′ = f ′ ∨ X ′ is easily seen to be X ′ = true. Since all equations on the
lasso are disjunctive, this solution ultimately propagates through the entire lasso, leading to
X = true.

Conversely, observe that there is an equation system E ′ consisting entirely of equations of
the form σX ′ = X ′′ (follows from Corollary 3.37 in [?]), with the additional property that
[[E]] = [[E ′]]. In E ′, the answer to X can only be true if it depends at some point on some
νX ′ = X ′′, where ultimately, X ′′ again depends on X ′, leading to a cycle in the dependency
graph with even lowest rank. ⊓⊔

2 Some requirements for an implementation

2.1 Output formats

For BESs several output formats are available. First of all, we should support a boolean output
format (probably ATerm based, like the file format of the PBES library). Furthermore, for
compatibility with other tools it is useful to have output in CWI format (a textual format).
Furthermore we know that BES in SRF coincide with parity games, hence for this class of
equation systems it is useful to be able to output in the format used by the PGSolver toolset.

In the future it could become useful to write part of an already generated BES to disk (in
order to save internal memory). Hence a design for a BES library should take this possibility
into account.

2.2 Graph interface

As was described before, the notion of dependency graphs for BES in SRF has some nice
properties. As an example it is straightforward to implement reduction modulo strong bisim-
ulation (and also some weaker equivalences) on top of this interface (see [?] for more details).
A more flexible notion of structure graph is also known [?], but at the moment it is not clear
what the advantages of this notion are in an implementation.

5

2.3 Flexible storage

It is unclear how formulae in a BES should be stored exactly in an implementation. Sometimes
e.g. storing in BDD format provides some advantages, whereas in other cases (like BES
encoding bisimilarity of to LPSs), the effect is adverse. Hence the design should be sufficiently
high-level as to leave a possibility for variation in the underlying format.

3 TODO

• Investigate requirements from bes deprecated.h

6

	Boolean Equation Systems
	Some requirements for an implementation
	Output formats
	Graph interface
	Flexible storage

	TODO

