
Data types for mCRL2

Aad Mathijssen

April 26, 2024

We provide a syntax for the standard data types of the mCRL2 language. This syntax is
intended to be a practical mix between standard mathematical notation and the syntax of
specification languages and programming languages in general.

1 Basic formalism

The underlying theory of the mCRL2 data types is abstract data types. Abstract data types
consist of:

- sorts and operations on these sorts;

- equations on terms made up from operations and variables, where the terms are of the
same sort.

Sorts are declared using the keyword sort, operations using the keyword map and equations
using the keyword eqn. Variables that are used in the equations need to be declared using
the keyword var. To distinguish constructor operations from normal operations the former
may be declared using the keyword cons. However, the use of these constructors is strongly
discouraged, because in practise they are implicitly defined via the concrete data types. With
the keyword sort, also abbreviations for sort expressions may be introduced.

1.1 Expressions

There are three kind of expressions in mCRL2, namely expressions over sorts, over data and
over processes. Sort expressions are made up from existing sort names and from representa-
tions of predefined data types and type constructors. Data expressions are terms constructed
from operations and variables. These data expressions are in the standard functional nota-
tion, but in the next sections also mixfix notation is introduced. To increase readability of
the operation declarations in the following sections, the sorts are left implicit and underscores
indicate the placement of the parameters.

Where clauses may be used as an abbreviation mechanism in data expressions. A where
clause is of the form e whr a0 = e0, . . . an = an end, with n ∈ N. Here, e is a data expression
and, for all i, 0 ≤ i ≤ n, ai is an identifier and ei is a data expression. Expression e is called
the body and each equation ai = ei is called a definition. Each identifier ai is used as an
abbreviation for ei in e, even if ai is already defined in the context. Also, an identifier ai
may not occur in any of the expressions ej , 0 ≤ j ≤ n. As a consequence, the order in which
expressions occur is irrelevant.

1

2 PREDEFINED DATA TYPES 2

2 Predefined data types

A number of predefined data types are provided. For each data type a sort is provided
together with a number of predefined operations.

2.1 Booleans

The boolean type is represented by the sort Bool . For this sort, we have the following
operations.

Operator Rich Plain

true true true

false false false

negation ¬ !_

conjunction ∧ _ && _

disjunction ∨ _ || _

implication ⇒ _ => _

universal quantification ∀ : . forall _:_._

existential quantification ∃ : . exists _:_._

In the quantifiers the first two parameters form a variable declaration, consisting of a name
and a sort; the third parameter is the body.

We also have operations that express the equality and inequality of two terms of the same
sort, and an operation that expresses the conditional. These operations are available for any
predefined sort, and are automatically generated for user defined sorts.

Operator Rich Plain

equality ≈ _ == _

inequality ̸≈ _ != _

conditional if (, ,) if(_,_,_)

less than < _ < _

less than or equal ≤ _ <= _

greater than or equal ≥ _ >= _

greater than > _ > _

2 PREDEFINED DATA TYPES 3

2.2 Numbers

Positive numbers, natural numbers, integers and real numbers (rational number approxima-
tions) are represented by the sorts Pos, Nat , Int and Real . For these sorts, we have the
following operations, where A,B ∈ {Pos,Nat , Int ,Real }:

Operator Rich Plain

positive numbers 1, 2, 3, . . . 1,2,3,...

natural numbers 0, 1, 2, . . . 0,1,2,...

integers . . . ,−2,−1, 0, 1, 2,,-2,-1,0,1,2,...

rational numbers

−1/1,−1/2,−1/3, . . . -1/1,-1/2,-1/3,...

0/1, 0/2, 0/3, . . . 0/1,0/2,0/3,...

1/1, 1/2, 1/3, . . . 1/1,1/2,1/3,...

.

conversion A2B() A2B(_)

maximum max (,) max(_,_)

minimum min(,) min(_,_)

absolute value abs() abs(_)

negation − -_

successor succ() succ(_)

predecessor pred() pred(_)

addition + _ + _

subtraction − _ - _

multiplication ∗ _ * _

division / _ / _

integer div div _ div _

integer mod mod _ mod _

exponentiation exp(,) exp(_,_)

floor floor() floor(_)

ceiling ceil() ceil(_)

round round() round(_)

Explicit type conversions can be done using the conversion operation A2B . The other oper-
ations perform implicit type conversions, when needed.

3 TYPE CONSTRUCTORS 4

3 Type constructors

Type constructors are predefined operations on sorts with which we can construct sorts. For
each sort that is constructed this way a number of operations are provided.

3.1 Lists

Lists, where all elements are of sort A, are declared by the sort expression List(A). The
following operations are provided for this sort.

Operator Rich Plain

construction [, . . . ,] [_,...,_]

element test ∈ _ in _

length # #_

cons ▷ _ |> _

snoc ◁ _ <| _

concatenation ++ _ ++ _

element at position . _ . _

the first element of a list head() head(_)

list without its first element tail() tail(_)

the last element of a list rhead() rhead(_)

list without its last element rtail() rtail(_)

The empty list is represented by an empty list construction, i.e. []. Also note that the lists
[a, b], a ▷ [b] and [a] ◁ b are all equivalent.

3.2 Sets and bags

Possibly infinite sets and bags where all elements are of sort A are declared by the sort
expressions Set(A) and Bag(A), respectively. The following operations are provided for
these sorts.

Operator Rich Plain

set enumeration { , . . . , } { _,...,_ }

bag enumeration { : , . . . , : } { _:_,...,_:_}

comprehension { : | } { _:_ | _ }

element test ∈ _ in _

bag multiplicity count(,) count(_,_)

subset/subbag ⊆ _ <= _

proper subset/subbag ⊂ _ < _

union ∪ _ + _

difference − _ - _

intersection ∩ _ * _

set complement !_

convert set to bag Set2Bag() Set2Bag(_)

convert bag to set Bag2Set() Bag2Set(_)

The empty set of bag is represented by an empty enumeration, i.e. { }. Note that a set
enumeration declares a set, not a bag. So e.g. { a, b, c } declares the same set as { a, b, c, c, a, c }.
In a bag enumeration the number of times an element occurs has to be declared explicitly.

3 TYPE CONSTRUCTORS 5

So e.g. { a : 2, b : 1 } declares a bag consisting of two a’s and one b. Also { a : 1, b : 1, a : 1 }
declares the same bag. A set comprehension {x : A | P(x) } declares the set consisting of all
elements x of sort A for which predicate P(x) holds, i.e. P(x) is an expression of sort Bool .
A bag comprehension {x : A | f (x) } declares the bag in which each element x occurs f (x)
times, i.e. f (x) is an expression of sort Nat . Note that functions P and f have to be total.

3.3 Function types

A function type of total functions from X0 × . . .×Xn to Y is declared by the sort expression
X0 × . . .×Xn → Y . The following operations are provided for these sorts.

Operator Rich Plain

function application (, . . . ,) _(_,...,_)

lambda abstraction λ :X0, . . . , :Xn. lambda _:X0,...,_:Xn._

Function types may be nested. To make this unambiguous, function arrow → is right asso-
ciative, which may be overridden by using parentheses. Also it is not allowed to have sort
expressions with → as its head at the left hand side of a function type. If this is needed,
parentheses need to be used.

3.4 Structured types

Structured types consist of sum types and product types. A structured type is declared by
the following sort expression, where n ∈ N+ and ki ∈ N with 1 ≤ i ≤ n:

struct c1(pr1,1 : A1,1, . . . , pr1,k1
: A1,k1

)?is c1
| c2(pr2,1 : A2,1, . . . , pr2,k2

: A2,k2)?is c2
...

| cn(prn,1 : An,1, . . . , prn,kn
: An,kn)?is cn

From this declaration it can be seen that at least 1 summation has to be specified and a
summation may consist of 0 products. Each summation i is labelled by a constructor ci and
optionally by a recogniser is ci . Recogniser is ci is used to determine if a term of the above
sort is constructed with ci. If a recogniser label is left out, the corresponding ? is also left out.
Each product (i, j) is optionally labelled by a projection pr i,j . With this projection, the j’th
element of summation i can be obtained. If a projection label is left out, the corresponding
: is left out. If a summation i does not have any products, it is written as ci?is ci instead of
ci()?is ci .

All labels have to be chosen such that no ambiguity can arise. Each sort Ai,j has to be a
valid sort expression, in which forward references to sort labels may occur. This means that
it is allowed to specify systems of equations of structured types.

The following operations are generated for the above sort. Projection and recogniser
operations are only generated if the user specified them.

Operator Rich Plain

constructor of summation i ci(, . . . ,) ci(_,...,_)

recogniser for constructor i is ci() is_ci(_)

projection (i, j), if declared pr i,j () prij(_)

3 TYPE CONSTRUCTORS 6

We give a few examples of sort declarations involving structured sorts. For finite n ∈ N,
an enumerated type can be declared by

sort Enum = struct enum0?is enum0 | . . . | enumn?is enumn

This generates constructor operations enumi : Enum, together with recogniser operations
is enumi : Enum → Bool , with 0 ≤ i ≤ n.

Pairs of elements of sort A and B can be declared as follows:

sort ABPair = struct pair(fst : A, snd : B)

For this declaration, constructor operation pair : A×B → ABPair and projection operations
fst : ABPair → A and snd : ABPair → B are generated.

Binary trees where all leaves and nodes are labelled with elements of sort A can be
declared as follows: Example:

sort BATree = struct leaf (A) | node(BATree,A,BATree)

Or, with projection and recogniser labels:

sort BATree = struct leaf (lval : A)?is leaf
| node(left : BATree,nval : A, right : BATree)?is node

The quantification of an associative operation f : A×A → A over all labels in a BATree, can
be defined in the same way for both declarations of the tree:

map qf : BATree → A
var t, u : BATree

a : A
eqn qf (leaf (a)) = a

qf (node(t, a, u)) = f (qf (t), f (a, qf (u)))

The last definition of sort BATree also allows the definition of operation qf without pattern
matching:

var t : BATree
eqn qf (t) = if (is leaf (t), lval(t), f (qf (left(t)), f (nval(t), qf (right(t)))))

3.4.1 Pattern matching versus projections and recognisers

When defining data equations, it is often the case that pattern matching on the constructors
of a structured type is more elegant than using projection and recogniser operations. The
last example is a typical instance of this.

When defining process equations, pattern matching can not be applied directly on the
left hand side of the equation. However, we can apply it indirectly through the use of
the summation and conditional operators in the right hand side. As an example, take the
following process declaration without pattern matching:

proc P(t : BATree) = is leaf (t) → get(lval(t)).δ +
is node(t) → get(nval(t)).(P(left(t)) + P(right(t)))

4 PARSING ISSUES 7

This declaration is equivalent to the following declaration, which uses pattern matching:

proc P(t : BATree) =
∑

a:A (t ≈ leaf (a)) → get(a).δ +∑
a:A,u,v:BATree (t ≈ node(u, a, v)) → get(a).(P(u) + P(v))

As can be seen from the above example, it is arguable which way is the most elegant to
specify process equations.

4 Parsing issues

The following issues are important not only for parsing by computer, but also for parsing by
humans.

4.1 Relation with processes

Data terms occur in relation to processes in the following ways:

- action parameters

- arguments of a process reference

- left argument of conditional process terms (b → p ⋄ q)
- right argument of a timed process term (p@t)

These last two are ambiguous or hard to read for where clauses, quantifications and infix
operations. For this reason, these operations need to be parenthesized.

4.2 Type inference

Data expressions involving numbers, sets, bags or lists may be ambiguous. E.g. namely 1
can be parsed as a term of sort Pos, Nat , Int or Real , and { } can be parsed as a term of an
arbitrary set or bag sort. For overloaded operations, we have similar problems.

These problems are solved by a type inference system: if the type of an expression can
be determined unambiguously, the system is able to infer the type of this expression.

4.3 Priorities and associativity

The prefix operators have the highest priority, followed by the infix operators, followed by
the lambda operator together with universal and existential quantification, followed by the
where clause. Table 1 lists the infix operators by decreasing priority. The symbols are shown
in plain text format and may represent multiple rich text symbols. Operators on the same
line have the same priority and associativity. Note that the list operations ▷, ◁ and ++ are
split into three priority levels such that expressions with one of these operations as their head
symbol are allowed if and only if they match the following pattern, where b, . . . , c, d, . . . , e
and s, . . . , t are expressions with a priority level greater than ++ :

b ▷ . . . ▷ c ▷ s++ . . . ++ t ◁ d ◁ . . . ◁ e

5 COMPARISON OF DATA LANGUAGES 8

operators associativity
*, . left
/, div, mod left
+, - left
|> right
<| left
++ left
<, >, <=, >=, in none
==, != right
&&, || right
=> right

Table 1: Precedence of infix operators

4.4 Design decisions

In the development of the language, a number of design decisions were taken. The most
important ones are listed here:

- Layout may not have any effect on the semantics of the language.

- Declarations have to be terminated by a semicolon. If this was not required the
language would be ambiguous. E.g. consider the following operation declarations:

X = f (g)
(k) = Y

From the layout it is clear that X is equal to f (g) and Y to (k). However, since layout
may not have any effect on the semantics of the language, it is also possible that X is
equal to f and Y to (g)(k).

5 Comparison of data languages

The data part of both the µCRL and the mCRL2 languages have a lot in common with
functional programming languages. For the features that involve functional programming
languages the following comparison is made.

Aspect \ Language µCRL mCRL2 Haskell/Clean MetaOCaml
Purely functional yes yes yes no
Expressiveness first-order higher-order higher-order higher-order
Strict no no no yes
Evaluation somewhat lazy somewhat lazy lazy eager
Control of eval. order no yes yes yes
Partial evaluation yes yes no yes
Polymorphism no no yes yes
Modules no no yes yes
Object orientation no no no yes
Concrete data types no yes yes yes

Table 2: Comparison of data languages

5 COMPARISON OF DATA LANGUAGES 9

Note that originally the evaluation in µCRL and mCRL2 was eager, but the addition of
just-in-time strategies has moved towards laziness. Since both languages have a non-strict
semantics and evaluation is not fully lazy, the evaluation only approximates the semantics.
However, this problem rarely pops up in practise and if it pops up, it can usually be circum-
vented by controlling the evaluation order. This can be achieved by the use of conditional
rewrite rules.

