
Enumerator

Wieger Wesselink

April 26, 2024

This document specifies an algorithm for enumeration. Given an expression φ of type T and a list of
data variables v, the algorithm will iteratively report expressions [φ0, φ1, . . .] that can be obtained from φ
by assigning constant values to the variables in v.

Let R be a rewriter on expressions of type T , let r be a rewriter on data expressions, and let σ a
substitution on data variables that is applied during rewriting with R. Furthermore let P be a queue of
pairs ⟨v, φ⟩, with v a non-empty list of variables and φ an expression. The function report solution is a
user supplied callback function. Whenever the callback function returns true, the while loop is interrupted.
The predicate function reject is used to discard an expression, so that it does not end up in the queue P .
The predicate function accept is used to accept an expression as a solution, even though it may still have
a non-empty list of variables. By default the reject and accept functions always return false. The reject
function is not just a cosmetic detail. The termination of the enumeration may depend on it. Enumeration is
often used to find solutions of boolean predicates. Then we typically reject the expression false and accept
the expression true or vice versa.

The is finite case in the algorithm applies to finite function sorts and finite sets. We assume that all
elements of such sorts can be obtained using the function values. We assume that for each sort s a non-empty
set of constructor functions constructors(s) is defined.

1



Enumerate(P,R, r, σ, report solution, reject, accept)
while P ̸= ∅ do

let ⟨v, φ⟩ = head(P ) with v = [v1, . . . , vn]
if v = [] then

φ′ := R(φ, σ)
if reject(φ′) then skip
else if report solution(φ′) then break

else if reject(φ) then
skip

else if is finite(sort(v1)) then
for e ∈ values(sort(v1)) do

φ′ := R(φ, σ[v1 := e])
if reject(φ′) then

skip
else if tail(v) = [] ∨ accept(φ′) then

if report solution(φ) then break
else

P := P ++[⟨tail(v), φ′⟩]
else

for c ∈ constructors(sort(v1)) do
let c : D1 × . . .×Dm → sort(v1)
choose y1, . . . , ym such that yi /∈ {v1, . . . , vn} ∪ FV (φ), for i = 1, · · · ,m
φ′ := R(φ, σ[v1 := r(c(y1, . . . , ym))])
if reject(φ′) then

skip
else if accept(φ′) ∨ (tail(v) = [] ∧ (φ = φ′ ∨ [y1, . . . , ym] = [])) then

if report solution(φ) then break
else

if φ = φ′ then P := P ++[⟨tail(v), φ′⟩]
else P := P ++[⟨tail(v) ++[y1, . . . , ym], φ′⟩]

P := tail(P )

Remark 1 The algorithm works both for data expressions and PBES expressions.

Remark 2 In the case of data expressions, R and r may coincide.

Remark 3 The algorithm can be extended such that it also returns the assignments corresponding to a
solution.

Remark 4 In some applications of the enumerator solutions with a non-empty list of variables are un-
wanted. In that case the φ = φ′ cases in the algorithm need to be removed. A boolean setting ac-
cept solutions with variables is introduced to control this.

2


